IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25813-y.html
   My bibliography  Save this article

Structural insight into the mechanism of energy transfer in cyanobacterial phycobilisomes

Author

Listed:
  • Lvqin Zheng

    (Peking University)

  • Zhenggao Zheng

    (Peking University
    Qingdao University)

  • Xiying Li

    (Peking University)

  • Guopeng Wang

    (Peking University)

  • Kun Zhang

    (Peking University)

  • Peijun Wei

    (Peking University)

  • Jindong Zhao

    (Peking University
    Institute of Hydrobiology, Chinese Academy of Sciences)

  • Ning Gao

    (Peking University)

Abstract

Phycobilisomes (PBS) are the major light-harvesting machineries for photosynthesis in cyanobacteria and red algae and they have a hierarchical structure of a core and peripheral rods, with both consisting of phycobiliproteins and linker proteins. Here we report the cryo-EM structures of PBS from two cyanobacterial species, Anabaena 7120 and Synechococcus 7002. Both PBS are hemidiscoidal in shape and share a common triangular core structure. While the Anabaena PBS has two additional hexamers in the core linked by the 4th linker domain of ApcE (LCM). The PBS structures predict that, compared with the PBS from red algae, the cyanobacterial PBS could have more direct routes for energy transfer to ApcD. Structure-based systematic mutagenesis analysis of the chromophore environment of ApcD and ApcF subunits reveals that aromatic residues are critical to excitation energy transfer (EET). The structures also suggest that the linker protein could actively participate in the process of EET in both rods and the cores. These results provide insights into the organization of chromophores and the mechanisms of EET within cyanobacterial PBS.

Suggested Citation

  • Lvqin Zheng & Zhenggao Zheng & Xiying Li & Guopeng Wang & Kun Zhang & Peijun Wei & Jindong Zhao & Ning Gao, 2021. "Structural insight into the mechanism of energy transfer in cyanobacterial phycobilisomes," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25813-y
    DOI: 10.1038/s41467-021-25813-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25813-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25813-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alejandra Guillén-García & Savannah E. R. Gibson & Caleb J. C. Jordan & Venkata K. Ramaswamy & Victoria L. Linthwaite & Elizabeth H. C. Bromley & Adrian P. Brown & David R. W. Hodgson & Tim R. Blower , 2022. "Allophycocyanin A is a carbon dioxide receptor in the cyanobacterial phycobilisome," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Zhiyuan Mao & Xingyue Li & Zhenhua Li & Liangliang Shen & Xiaoyi Li & Yanyan Yang & Wenda Wang & Tingyun Kuang & Jian-Ren Shen & Guangye Han, 2024. "Structure and distinct supramolecular organization of a PSII-ACPII dimer from a cryptophyte alga Chroomonas placoidea," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Lvqin Zheng & Zhengdong Zhang & Hongrui Wang & Zhenggao Zheng & Jiayu Wang & Heyuan Liu & Hailong Chen & Chunxia Dong & Guopeng Wang & Yuxiang Weng & Ning Gao & Jindong Zhao, 2023. "Cryo-EM and femtosecond spectroscopic studies provide mechanistic insight into the energy transfer in CpcL-phycobilisomes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Han-Wei Jiang & Hsiang-Yi Wu & Chun-Hsiung Wang & Cheng-Han Yang & Jui-Tse Ko & Han-Chen Ho & Ming-Daw Tsai & Donald A. Bryant & Fay-Wei Li & Meng-Chiao Ho & Ming-Yang Ho, 2023. "A structure of the relict phycobilisome from a thylakoid-free cyanobacterium," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Keisuke Kawakami & Tasuku Hamaguchi & Yuu Hirose & Daisuke Kosumi & Makoto Miyata & Nobuo Kamiya & Koji Yonekura, 2022. "Core and rod structures of a thermophilic cyanobacterial light-harvesting phycobilisome," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Dingyi Li & Hong Dong & Xupeng Cao & Wangyin Wang & Can Li, 2023. "Enhancing photosynthetic CO2 fixation by assembling metal-organic frameworks on Chlorella pyrenoidosa," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Xing Zhang & Yanan Xiao & Xin You & Shan Sun & Sen-Fang Sui, 2024. "In situ structural determination of cyanobacterial phycobilisome–PSII supercomplex by STAgSPA strategy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25813-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.