IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-24631-6.html
   My bibliography  Save this article

The HIF target MAFF promotes tumor invasion and metastasis through IL11 and STAT3 signaling

Author

Listed:
  • Eui Jung Moon

    (Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University
    MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford)

  • Stephano S. Mello

    (Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University
    University of Rochester Medical Center)

  • Caiyun G. Li

    (Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University)

  • Jen-Tsan Chi

    (Duke University)

  • Kaushik Thakkar

    (Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University)

  • Jacob G. Kirkland

    (Stanford University
    Oklahoma Medical Research Foundation)

  • Edward L. Lagory

    (Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University)

  • Ik Jae Lee

    (Yonsei Cancer Center)

  • Anh N. Diep

    (Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University)

  • Yu Miao

    (Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University)

  • Marjan Rafat

    (Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University
    Vanderbilt University)

  • Marta Vilalta

    (Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University)

  • Laura Castellini

    (Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University)

  • Adam J. Krieg

    (Oregon Health and Sciences University)

  • Edward E. Graves

    (Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University)

  • Laura D. Attardi

    (Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University)

  • Amato J. Giaccia

    (Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University
    MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford)

Abstract

Hypoxia plays a critical role in tumor progression including invasion and metastasis. To determine critical genes regulated by hypoxia that promote invasion and metastasis, we screen fifty hypoxia inducible genes for their effects on invasion. In this study, we identify v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (MAFF) as a potent regulator of tumor invasion without affecting cell viability. MAFF expression is elevated in metastatic breast cancer patients and is specifically correlated with hypoxic tumors. Combined ChIP- and RNA-sequencing identifies IL11 as a direct transcriptional target of the heterodimer between MAFF and BACH1, which leads to activation of STAT3 signaling. Inhibition of IL11 results in similar levels of metastatic suppression as inhibition of MAFF. This study demonstrates the oncogenic role of MAFF as an activator of the IL11/STAT3 pathways in breast cancer.

Suggested Citation

  • Eui Jung Moon & Stephano S. Mello & Caiyun G. Li & Jen-Tsan Chi & Kaushik Thakkar & Jacob G. Kirkland & Edward L. Lagory & Ik Jae Lee & Anh N. Diep & Yu Miao & Marjan Rafat & Marta Vilalta & Laura Cas, 2021. "The HIF target MAFF promotes tumor invasion and metastasis through IL11 and STAT3 signaling," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24631-6
    DOI: 10.1038/s41467-021-24631-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-24631-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-24631-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Balázs Győrffy & Pawel Surowiak & Jan Budczies & András Lánczky, 2013. "Online Survival Analysis Software to Assess the Prognostic Value of Biomarkers Using Transcriptomic Data in Non-Small-Cell Lung Cancer," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang-jiang Li & Tiantian Yu & Peiting Zeng & Jingyu Tian & Panpan Liu & Shuang Qiao & Shijun Wen & Yumin Hu & Qiao Liu & Wenhua Lu & Hui Zhang & Peng Huang, 2024. "Wild-type IDH2 is a therapeutic target for triple-negative breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Paul A Stewart & Katja Parapatics & Eric A Welsh & André C Müller & Haoyun Cao & Bin Fang & John M Koomen & Steven A Eschrich & Keiryn L Bennett & Eric B Haura, 2015. "A Pilot Proteogenomic Study with Data Integration Identifies MCT1 and GLUT1 as Prognostic Markers in Lung Adenocarcinoma," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-18, November.
    3. Yongyao Fu & Abigail Pajulas & Jocelyn Wang & Baohua Zhou & Anthony Cannon & Cherry Cheuk Lam Cheung & Jilu Zhang & Huaxin Zhou & Amanda Jo Fisher & David T. Omstead & Sabrina Khan & Lei Han & Jean-Ch, 2022. "Mouse pulmonary interstitial macrophages mediate the pro-tumorigenic effects of IL-9," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Elena Spina & Julia Simundza & Angela Incassati & Anupama Chandramouli & Matthias C. Kugler & Ziyan Lin & Alireza Khodadadi-Jamayran & Christine J. Watson & Pamela Cowin, 2022. "Gpr125 is a unifying hallmark of multiple mammary progenitors coupled to tumor latency," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Zhen Lu & Jinyun Chen & Pengfei Yu & Matthew J. Atherton & Jun Gui & Vivek S. Tomar & Justin D. Middleton & Neil T. Sullivan & Sunil Singhal & Subin S. George & Ashley G. Woolfork & Aalim M. Weljie & , 2022. "Tumor factors stimulate lysosomal degradation of tumor antigens and undermine their cross-presentation in lung cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Ming Yi & Ruoqing Zhu & Robert M Stephens, 2018. "GradientScanSurv—An exhaustive association test method for gene expression data with censored survival outcome," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-28, December.
    7. Bo Yuan & Jingyuan Xiong & Chaoxiong Zhang & Yuqin Yao & Chaoxiong Zhang & Ting An & Jie Liu, 2020. "Prognostic Roles of APLNR Expression in Non-Small Cell Lung Cancer," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 27(5), pages 21089-21098, May.
    8. Lijuan Zhang & Kai Zhang & Jieyou Zhang & Jinrong Zhu & Qing Xi & Huafeng Wang & Zimu Zhang & Yingnan Cheng & Guangze Yang & Hongkun Liu & Xiangdong Guo & Dongmei Zhou & Zhenyi Xue & Yan Li & Qi Zhang, 2021. "Loss of fragile site-associated tumor suppressor promotes antitumor immunity via macrophage polarization," Nature Communications, Nature, vol. 12(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24631-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.