IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-21527-3.html
   My bibliography  Save this article

Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution

Author

Listed:
  • Rufan Chen

    (Wuhan University)

  • Yang Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yuan Ma

    (University of Science and Technology Beijing)

  • Arindam Mal

    (Wuhan University)

  • Xiao-Ya Gao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Lei Gao

    (University of Science and Technology Beijing)

  • Lijie Qiao

    (University of Science and Technology Beijing)

  • Xu-Bing Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Li-Zhu Wu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Cheng Wang

    (Wuhan University)

Abstract

Covalent organic frameworks have recently gained increasing attention in photocatalytic hydrogen generation from water. However, their structure-property-activity relationship, which should be beneficial for the structural design, is still far-away explored. Herein, we report the designed synthesis of four isostructural porphyrinic two-dimensional covalent organic frameworks (MPor-DETH-COF, M = H2, Co, Ni, Zn) and their photocatalytic activity in hydrogen generation. Our results clearly show that all four covalent organic frameworks adopt AA stacking structures, with high crystallinity and large surface area. Interestingly, the incorporation of different transition metals into the porphyrin rings can rationally tune the photocatalytic hydrogen evolution rate of corresponding covalent organic frameworks, with the order of CoPor-DETH-COF

Suggested Citation

  • Rufan Chen & Yang Wang & Yuan Ma & Arindam Mal & Xiao-Ya Gao & Lei Gao & Lijie Qiao & Xu-Bing Li & Li-Zhu Wu & Cheng Wang, 2021. "Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21527-3
    DOI: 10.1038/s41467-021-21527-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-21527-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-21527-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingrun Ran & Hongping Zhang & Sijia Fu & Mietek Jaroniec & Jieqiong Shan & Bingquan Xia & Yang Qu & Jiangtao Qu & Shuangming Chen & Li Song & Julie M. Cairney & Liqiang Jing & Shi-Zhang Qiao, 2022. "NiPS3 ultrathin nanosheets as versatile platform advancing highly active photocatalytic H2 production," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Yimeng Li & Li Yang & Huijie He & Lei Sun & Honglei Wang & Xu Fang & Yanliang Zhao & Daoyuan Zheng & Yu Qi & Zhen Li & Weiqiao Deng, 2022. "In situ photodeposition of platinum clusters on a covalent organic framework for photocatalytic hydrogen production," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Chencheng Qin & Xiaodong Wu & Lin Tang & Xiaohong Chen & Miao Li & Yi Mou & Bo Su & Sibo Wang & Chengyang Feng & Jiawei Liu & Xingzhong Yuan & Yanli Zhao & Hou Wang, 2023. "Dual donor-acceptor covalent organic frameworks for hydrogen peroxide photosynthesis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Yunyang Qian & Yulan Han & Xiyuan Zhang & Ge Yang & Guozhen Zhang & Hai-Long Jiang, 2023. "Computation-based regulation of excitonic effects in donor-acceptor covalent organic frameworks for enhanced photocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Wei Zhou & Xiao Wang & Wenling Zhao & Naijia Lu & Die Cong & Zhen Li & Peigeng Han & Guoqing Ren & Lei Sun & Chengcheng Liu & Wei-Qiao Deng, 2023. "Photocatalytic CO2 reduction to syngas using metallosalen covalent organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Jin Ming Wang & Qin Yao Zhu & Jeong Heon Lee & Tae Gyun Woo & Yue Xing Zhang & Woo-Dong Jang & Tae Kyu Kim, 2023. "Asymmetric gradient orbital interaction of hetero-diatomic active sites for promoting C − C coupling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Sijie Wan & Wang Wang & Bei Cheng & Guoqiang Luo & Qiang Shen & Jiaguo Yu & Jianjun Zhang & Shaowen Cao & Lianmeng Zhang, 2024. "A superlattice interface and S-scheme heterojunction for ultrafast charge separation and transfer in photocatalytic H2 evolution," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Yong Liu & Liangchao Yuan & Wenwen Chi & Wang-Kang Han & Jinfang Zhang & Huan Pang & Zhongchang Wang & Zhi-Guo Gu, 2024. "Cairo pentagon tessellated covalent organic frameworks with mcm topology for near-infrared phototherapy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Ting He & Wenlong Zhen & Yongzhi Chen & Yuanyuan Guo & Zhuoer Li & Ning Huang & Zhongping Li & Ruoyang Liu & Yuan Liu & Xu Lian & Can Xue & Tze Chien Sum & Wei Chen & Donglin Jiang, 2023. "Integrated interfacial design of covalent organic framework photocatalysts to promote hydrogen evolution from water," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Yan Yang & Xiaoyu Chu & Hong-Yu Zhang & Rui Zhang & Yu-Han Liu & Feng-Ming Zhang & Meng Lu & Zhao-Di Yang & Ya-Qian Lan, 2023. "Engineering β-ketoamine covalent organic frameworks for photocatalytic overall water splitting," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Wei Zhao & Liang Luo & Muyu Cong & Xueyan Liu & Zhiyun Zhang & Mounib Bahri & Boyu Li & Jing Yang & Miaojie Yu & Lunjie Liu & Yu Xia & Nigel D. Browning & Wei-Hong Zhu & Weiwei Zhang & Andrew I. Coope, 2024. "Nanoscale covalent organic frameworks for enhanced photocatalytic hydrogen production," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Zhongshan Chen & Jingyi Wang & Mengjie Hao & Yinghui Xie & Xiaolu Liu & Hui Yang & Geoffrey I. N. Waterhouse & Xiangke Wang & Shengqian Ma, 2023. "Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21527-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.