IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18465-x.html
   My bibliography  Save this article

Middle-aged individuals may be in a perpetual state of H3N2 influenza virus susceptibility

Author

Listed:
  • Sigrid Gouma

    (University of Pennsylvania)

  • Kangchon Kim

    (University of Chicago)

  • Madison E. Weirick

    (University of Pennsylvania)

  • Megan E. Gumina

    (University of Pennsylvania)

  • Angela Branche

    (University of Rochester Medical Center)

  • David J. Topham

    (University of Rochester Medical Center)

  • Emily T. Martin

    (University of Michigan School of Public Health)

  • Arnold S. Monto

    (University of Michigan School of Public Health)

  • Sarah Cobey

    (University of Chicago)

  • Scott E. Hensley

    (University of Pennsylvania)

Abstract

Influenza virus exposures in childhood can establish long-lived memory B cell responses that can be recalled later in life. Here, we complete a large serological survey to elucidate the specificity of antibodies against contemporary H3N2 viruses in differently aged individuals who were likely primed with different H3N2 strains in childhood. We find that most humans who were first infected in childhood with H3N2 viral strains from the 1960s and 1970s possess non-neutralizing antibodies against contemporary 3c2.A H3N2 viruses. We find that 3c2.A H3N2 virus infections boost non-neutralizing H3N2 antibodies in middle-aged individuals, potentially leaving many of them in a perpetual state of 3c2.A H3N2 viral susceptibility.

Suggested Citation

  • Sigrid Gouma & Kangchon Kim & Madison E. Weirick & Megan E. Gumina & Angela Branche & David J. Topham & Emily T. Martin & Arnold S. Monto & Sarah Cobey & Scott E. Hensley, 2020. "Middle-aged individuals may be in a perpetual state of H3N2 influenza virus susceptibility," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18465-x
    DOI: 10.1038/s41467-020-18465-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18465-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18465-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Colleen Furey & Gabrielle Scher & Naiqing Ye & Lisa Kercher & Jennifer DeBeauchamp & Jeri Carol Crumpton & Trushar Jeevan & Christopher Patton & John Franks & Adam Rubrum & Mohamad-Gabriel Alameh & St, 2024. "Development of a nucleoside-modified mRNA vaccine against clade 2.3.4.4b H5 highly pathogenic avian influenza virus," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Tim K. Tsang & Ranawaka A. P. M. Perera & Vicky J. Fang & Jessica Y. Wong & Eunice Y. Shiu & Hau Chi So & Dennis K. M. Ip & J. S. Malik Peiris & Gabriel M. Leung & Benjamin J. Cowling & Simon Caucheme, 2022. "Reconstructing antibody dynamics to estimate the risk of influenza virus infection," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Vijaykrishna Dhanasekaran & Sheena Sullivan & Kimberly M. Edwards & Ruopeng Xie & Arseniy Khvorov & Sophie A. Valkenburg & Benjamin J. Cowling & Ian G. Barr, 2022. "Human seasonal influenza under COVID-19 and the potential consequences of influenza lineage elimination," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Simon P. J. Jong & Zandra C. Felix Garza & Joseph C. Gibson & Sarah Leeuwen & Robert P. Vries & Geert-Jan Boons & Marliek Hoesel & Karen Haan & Laura E. Groeningen & Katina D. Hulme & Hugo D. G. Willi, 2024. "Determinants of epidemic size and the impacts of lulls in seasonal influenza virus circulation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18465-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.