IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i18p10084-d632381.html
   My bibliography  Save this article

Redox Heterogeneity Entangles Soil and Climate Interactions

Author

Listed:
  • Jared L. Wilmoth

    (Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA)

Abstract

Interactions between soils and climate impact wider environmental sustainability. Soil heterogeneity intricately regulates these interactions over short spatiotemporal scales and therefore needs to be more finely examined. This paper examines how redox heterogeneity at the level of minerals, microbial cells, organic matter, and the rhizosphere entangles biogeochemical cycles in soil with climate change. Redox heterogeneity is used to develop a conceptual framework that encompasses soil microsites (anaerobic and aerobic) and cryptic biogeochemical cycling, helping to explain poorly understood processes such as methanogenesis in oxygenated soils. This framework is further shown to disentangle global carbon (C) and nitrogen (N) pathways that include CO 2 , CH 4 , and N 2 O. Climate-driven redox perturbations are discussed using wetlands and tropical forests as model systems. Powerful analytical methods are proposed to be combined and used more extensively to study coupled abiotic and biotic reactions that are affected by redox heterogeneity. A core view is that emerging and future research will benefit substantially from developing multifaceted analyses of redox heterogeneity over short spatiotemporal scales in soil. Taking a leap in our understanding of soil and climate interactions and their evolving influence on environmental sustainability then depends on greater collaborative efforts to comprehensively investigate redox heterogeneity spanning the domain of microscopic soil interfaces.

Suggested Citation

  • Jared L. Wilmoth, 2021. "Redox Heterogeneity Entangles Soil and Climate Interactions," Sustainability, MDPI, vol. 13(18), pages 1-14, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10084-:d:632381
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/18/10084/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/18/10084/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karine Lalonde & Alfonso Mucci & Alexandre Ouellet & Yves Gélinas, 2012. "Preservation of organic matter in sediments promoted by iron," Nature, Nature, vol. 483(7388), pages 198-200, March.
    2. Judy Q. Yang & Xinning Zhang & Ian C. Bourg & Howard A. Stone, 2021. "4D imaging reveals mechanisms of clay-carbon protection and release," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Katherine Tully & Clare Sullivan & Ray Weil & Pedro Sanchez, 2015. "The State of Soil Degradation in Sub-Saharan Africa: Baselines, Trajectories, and Solutions," Sustainability, MDPI, vol. 7(6), pages 1-30, May.
    4. Ashley E. Beusekom & William A. Gould & A. Carolina Monmany & Azad Henareh Khalyani & Maya Quiñones & Stephen J. Fain & Maria José Andrade-Núñez & Grizelle González, 2018. "Fire weather and likelihood: characterizing climate space for fire occurrence and extent in Puerto Rico," Climatic Change, Springer, vol. 146(1), pages 117-131, January.
    5. Katharina F. Ettwig & Margaret K. Butler & Denis Le Paslier & Eric Pelletier & Sophie Mangenot & Marcel M. M. Kuypers & Frank Schreiber & Bas E. Dutilh & Johannes Zedelius & Dirk de Beer & Jolein Gloe, 2010. "Nitrite-driven anaerobic methane oxidation by oxygenic bacteria," Nature, Nature, vol. 464(7288), pages 543-548, March.
    6. Thu-Huong Nguyen & Oz Sahin & Michael Howes, 2021. "Climate Change Adaptation Influences and Barriers Impacting the Asian Agricultural Industry," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    7. Marco Keiluweit & Tom Wanzek & Markus Kleber & Peter Nico & Scott Fendorf, 2017. "Anaerobic microsites have an unaccounted role in soil carbon stabilization," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    8. Chunmei Chen & Steven J. Hall & Elizabeth Coward & Aaron Thompson, 2020. "Iron-mediated organic matter decomposition in humid soils can counteract protection," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jannik Martens & Carsten W. Mueller & Prachi Joshi & Christoph Rosinger & Markus Maisch & Andreas Kappler & Michael Bonkowski & Georg Schwamborn & Lutz Schirrmeister & Janet Rethemeyer, 2023. "Stabilization of mineral-associated organic carbon in Pleistocene permafrost," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Berazneva, Julia & McBride, Linden & Sheahan, Megan & Güereña, David, 2018. "Empirical assessment of subjective and objective soil fertility metrics in east Africa: Implications for researchers and policy makers," World Development, Elsevier, vol. 105(C), pages 367-382.
    3. Maktabifard, Mojtaba & Al-Hazmi, Hussein E. & Szulc, Paulina & Mousavizadegan, Mohammad & Xu, Xianbao & Zaborowska, Ewa & Li, Xiang & Mąkinia, Jacek, 2023. "Net-zero carbon condition in wastewater treatment plants: A systematic review of mitigation strategies and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    4. Ke-Qing Xiao & Oliver W. Moore & Peyman Babakhani & Lisa Curti & Caroline L. Peacock, 2022. "Mineralogical control on methylotrophic methanogenesis and implications for cryptic methane cycling in marine surface sediment," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    6. Mohamed A. M. Abd Elbasit & Jasper Knight & Gang Liu & Majed M. Abu-Zreig & Rashid Hasaan, 2021. "Valuation of Ecosystem Services in South Africa, 2001–2019," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    7. Anshuman Gunawat & Devesh Sharma & Aditya Sharma & Swatantra Kumar Dubey, 2022. "Assessment of climate change impact and potential adaptation measures on wheat yield using the DSSAT model in the semi-arid environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 2077-2096, March.
    8. Mugizi, Francisco M.P. & Matsumoto, Tomoya, 2021. "A curse or a blessing? Population pressure and soil quality in Sub-Saharan Africa: Evidence from rural Uganda," Ecological Economics, Elsevier, vol. 179(C).
    9. Berazneva, Julia & McBride, Linden & Sheahan, Megan & Guerena, David, 2016. "Perceived, measured, and estimated soil fertility in east Africa: Implications for farmers and researchers," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235466, Agricultural and Applied Economics Association.
    10. Nikolaos V. Paranychianakis & Giorgos Giannakis & Daniel Moraetis & Vasileios A. Tzanakakis & Nikolaos P. Nikolaidis, 2021. "Crop Litter Has a Strong Effect on Soil Organic Matter Sequestration in Semi-Arid Environments," Sustainability, MDPI, vol. 13(23), pages 1-14, November.
    11. Steffen Schlüter & Frederic Leuther & Lukas Albrecht & Carmen Hoeschen & Rüdiger Kilian & Ronny Surey & Robert Mikutta & Klaus Kaiser & Carsten W. Mueller & Hans-Jörg Vogel, 2022. "Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Yunpeng Zhao & Chengzhu Liu & Xingqi Li & Lixiao Ma & Guoqing Zhai & Xiaojuan Feng, 2023. "Sphagnum increases soil’s sequestration capacity of mineral-associated organic carbon via activating metal oxides," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Haitao Shang & Daniel H. Rothman & Gregory P. Fournier, 2022. "Oxidative metabolisms catalyzed Earth’s oxygenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Wang, Ning & Zhao, Shiyue & Wang, Sutong, 2024. "A novel clustering-based resampling with cost-sensitive boosting method to model and map wildfire susceptibility," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    15. Elias M. A. Militao & Elsa M. Salvador & José P. Silva & Olalekan A. Uthman & Stig Vinberg & Gloria Macassa, 2022. "Coping Strategies for Household Food Insecurity, and Perceived Health in an Urban Community in Southern Mozambique: A Qualitative Study," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    16. Zeleke Asaye & Dong-Gill Kim & Fantaw Yimer & Katharina Prost & Oukula Obsa & Menfese Tadesse & Mersha Gebrehiwot & Nicolas Brüggemann, 2022. "Effects of Combined Application of Compost and Mineral Fertilizer on Soil Carbon and Nutrient Content, Yield, and Agronomic Nitrogen Use Efficiency in Maize-Potato Cropping Systems in Southern Ethiopi," Land, MDPI, vol. 11(6), pages 1-20, May.
    17. Guoai Li & Xuxu Chai & Zheng Shi & Honghua Ruan, 2023. "Interactive Effects Determine Radiocarbon Abundance in Soil Fractions of Global Biomes," Land, MDPI, vol. 12(5), pages 1-17, May.
    18. Wakjira Takala Dibaba & Tamene Adugna Demissie & Konrad Miegel, 2021. "Prioritization of Sub-Watersheds to Sediment Yield and Evaluation of Best Management Practices in Highland Ethiopia, Finchaa Catchment," Land, MDPI, vol. 10(6), pages 1-19, June.
    19. He, Yanying & Li, Yiming & Li, Xuecheng & Liu, Yingrui & Wang, Yufen & Guo, Haixiao & Hou, Jiaqi & Zhu, Tingting & Liu, Yiwen, 2023. "Net-zero greenhouse gas emission from wastewater treatment: Mechanisms, opportunities and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    20. Kamel Khanchoul & Kaouther Selmi & Kaddour Benmarce, 2020. "Assessment Of Soil Erosion By Rusle Model In The Mellegue Watershed, Northeast Of Algeria," Environment & Ecosystem Science (EES), Zibeline International Publishing, vol. 4(1), pages 15-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10084-:d:632381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.