IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v269y2023ics0360544223001299.html
   My bibliography  Save this article

Air pollution co-benefits from strengthening electric transmission and distribution systems

Author

Listed:
  • Janicke, Lauren
  • Nock, Destenie
  • Surana, Kavita
  • Jordaan, Sarah M.

Abstract

Inefficiencies in the transmission and distribution (T&D) of electricity between suppliers and customers can lead to higher compensatory electricity generation and unanticipated air pollution. Using both life cycle assessments and uncertainty analyses, we estimate the compensatory air pollutants – CO2eq, SOx, NOx, and PM2.5 – associated with aggregate and non-technical T&D losses at national and subnational scales. Our global analysis estimates that 1 Gigatonne of CO2eq and 1.3 Megatonnes (Mt) NOx, 1.6 Mt SOx, and 2 Mt PM2.5 are associated with annual aggregate T&D losses. We also find that approximately 274 Mt CO2eq, 367 kilotonnes (kt) NOx, 486 kt SOx, and 535 kt PM2.5 are emitted due to non-technical T&D losses. Our subnational analysis in the United States demonstrates the variation of emissions savings across regulatory jurisdictions. We present an initial deployment cost analysis for CO2eq reduction which compares deploying smart meters (i.e., reducing non-technical T&D losses) to renewable energy generation expansion. Investments in T&D infrastructure are beneficial in a completely decarbonized system because improvements in the T&D grid can make investments in renewable energy more cost-effective.

Suggested Citation

  • Janicke, Lauren & Nock, Destenie & Surana, Kavita & Jordaan, Sarah M., 2023. "Air pollution co-benefits from strengthening electric transmission and distribution systems," Energy, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:energy:v:269:y:2023:i:c:s0360544223001299
    DOI: 10.1016/j.energy.2023.126735
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223001299
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126735?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pfeiffer, Alexander & Hepburn, Cameron & Vogt-Schilb, Adrien & Caldecott, Ben, 2018. "Committed Emissions from Existing and Planned Power Plants and Asset Stranding Required to Meet the Paris Agreement," IDB Publications (Working Papers) 8886, Inter-American Development Bank.
    2. Depuru, Soma Shekara Sreenadh Reddy & Wang, Lingfeng & Devabhaktuni, Vijay, 2011. "Electricity theft: Overview, issues, prevention and a smart meter based approach to control theft," Energy Policy, Elsevier, vol. 39(2), pages 1007-1015, February.
    3. Arvesen, Anders & Hertwich, Edgar G., 2012. "Assessing the life cycle environmental impacts of wind power: A review of present knowledge and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5994-6006.
    4. Dan Tong & Qiang Zhang & Steven J. Davis & Fei Liu & Bo Zheng & Guannan Geng & Tao Xue & Meng Li & Chaopeng Hong & Zifeng Lu & David G. Streets & Dabo Guan & Kebin He, 2018. "Targeted emission reductions from global super-polluting power plant units," Nature Sustainability, Nature, vol. 1(1), pages 59-68, January.
    5. Nock, Destenie & Baker, Erin, 2019. "Holistic multi-criteria decision analysis evaluation of sustainable electric generation portfolios: New England case study," Applied Energy, Elsevier, vol. 242(C), pages 655-673.
    6. Kumar V., Sampath & Prasad, Jagdish & Samikannu, Ravi, 2017. "Overview, issues and prevention of energy theft in smart grids and virtual power plants in Indian context," Energy Policy, Elsevier, vol. 110(C), pages 365-374.
    7. Maxim, Alexandru, 2014. "Sustainability assessment of electricity generation technologies using weighted multi-criteria decision analysis," Energy Policy, Elsevier, vol. 65(C), pages 284-297.
    8. Rodgers, Mark & Coit, David & Felder, Frank & Carlton, Annmarie, 2019. "Assessing the effects of power grid expansion on human health externalities," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 92-104.
    9. Franklyn Kanyako & Erin Baker, 2021. "Uncertainty analysis of the future cost of wind energy on climate change mitigation," Climatic Change, Springer, vol. 166(1), pages 1-17, May.
    10. Pfeiffer, Olivia & Nock, Destenie & Baker, Erin, 2021. "Wind energy's bycatch: Offshore wind deployment impacts on hydropower operation and migratory fish," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    11. Liguo, Xin & Ahmad, Manzoor & Khattak, Shoukat Iqbal, 2022. "Impact of innovation in marine energy generation, distribution, or transmission-related technologies on carbon dioxide emissions in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    12. Elkin D. Reyes & Arturo S. Bretas & Sergio Rivera, 2020. "Marginal Uncertainty Cost Functions for Solar Photovoltaic, Wind Energy, Hydro Generators, and Plug-In Electric Vehicles," Energies, MDPI, vol. 13(23), pages 1-20, December.
    13. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    14. Constantine Samaras, 2019. "Wasting less electricity before use," Nature Climate Change, Nature, vol. 9(9), pages 648-649, September.
    15. Klein, Sharon J.W. & Whalley, Stephanie, 2015. "Comparing the sustainability of U.S. electricity options through multi-criteria decision analysis," Energy Policy, Elsevier, vol. 79(C), pages 127-149.
    16. Chatzimouratidis, Athanasios I. & Pilavachi, Petros A., 2007. "Objective and subjective evaluation of power plants and their non-radioactive emissions using the analytic hierarchy process," Energy Policy, Elsevier, vol. 35(8), pages 4027-4038, August.
    17. Christopher J. Smith & Piers M. Forster & Myles Allen & Jan Fuglestvedt & Richard J. Millar & Joeri Rogelj & Kirsten Zickfeld, 2019. "Current fossil fuel infrastructure does not yet commit us to 1.5 °C warming," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    18. Kavita Surana & Sarah M. Jordaan, 2019. "The climate mitigation opportunity behind global power transmission and distribution," Nature Climate Change, Nature, vol. 9(9), pages 660-665, September.
    19. Weisser, Daniel, 2007. "A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies," Energy, Elsevier, vol. 32(9), pages 1543-1559.
    20. Sarah M. Jordaan & Andrew W. Ruttinger & Kavita Surana & Destenie Nock & Scot M. Miller & Arvind P. Ravikumar, 2022. "Global mitigation opportunities for the life cycle of natural gas-fired power," Nature Climate Change, Nature, vol. 12(11), pages 1059-1067, November.
    21. Pehnt, Martin, 2006. "Dynamic life cycle assessment (LCA) of renewable energy technologies," Renewable Energy, Elsevier, vol. 31(1), pages 55-71.
    22. Das, Saptarshi & Hittinger, Eric & Williams, Eric, 2020. "Learning is not enough: Diminishing marginal revenues and increasing abatement costs of wind and solar," Renewable Energy, Elsevier, vol. 156(C), pages 634-644.
    23. Smith, Thomas B., 2004. "Electricity theft: a comparative analysis," Energy Policy, Elsevier, vol. 32(18), pages 2067-2076, December.
    24. Ryna Yiyun Cui & Nathan Hultman & Morgan R. Edwards & Linlang He & Arijit Sen & Kavita Surana & Haewon McJeon & Gokul Iyer & Pralit Patel & Sha Yu & Ted Nace & Christine Shearer, 2019. "Quantifying operational lifetimes for coal power plants under the Paris goals," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    25. Pepermans, Guido, 2014. "Valuing smart meters," Energy Economics, Elsevier, vol. 45(C), pages 280-294.
    26. Teagan Goforth & Destenie Nock, 2022. "Air pollution disparities and equality assessments of US national decarbonization strategies," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jones, Andrew & Nock, Destenie & Samaras, Constantine & Qiu, Yueming (Lucy) & Xing, Bo, 2023. "Climate change impacts on future residential electricity consumption and energy burden: A case study in Phoenix, Arizona," Energy Policy, Elsevier, vol. 183(C).
    2. Gonçalves, Rui & Ribeiro, Vitor Miguel, 2024. "Convolutional attention with roll padding: Classifying PM2.5 concentration levels in the city of Beijing," Energy, Elsevier, vol. 289(C).
    3. Kwon, Minji & Cong, Shuchen & Nock, Destenie & Huang, Luling & Qiu, Yueming (Lucy) & Xing, Bo, 2023. "Forgone summertime comfort as a function of avoided electricity use," Energy Policy, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teagan Goforth & Destenie Nock, 2022. "Air pollution disparities and equality assessments of US national decarbonization strategies," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    3. Sokka, L. & Sinkko, T. & Holma, A. & Manninen, K. & Pasanen, K. & Rantala, M. & Leskinen, P., 2016. "Environmental impacts of the national renewable energy targets – A case study from Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1599-1610.
    4. Gao, Cheng-kang & Na, Hong-ming & Song, Kai-hui & Dyer, Noel & Tian, Fan & Xu, Qing-jiang & Xing, Yu-hong, 2019. "Environmental impact analysis of power generation from biomass and wind farms in different locations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 307-317.
    5. Tim H¨ofer & Rüdiger von Nitzsch & Reinhard Madlener, 2020. "Using Value-Focused Thinking and Multicriteria Decision Making to Evaluate Energy Transition Alternatives," Decision Analysis, INFORMS, vol. 17(4), pages 330-355, December.
    6. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    7. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    8. Asdrubali, F. & Baggio, P. & Prada, A. & Grazieschi, G. & Guattari, C., 2020. "Dynamic life cycle assessment modelling of a NZEB building," Energy, Elsevier, vol. 191(C).
    9. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    10. Riccardo Basosi & Roberto Bonciani & Dario Frosali & Giampaolo Manfrida & Maria Laura Parisi & Franco Sansone, 2020. "Life Cycle Analysis of a Geothermal Power Plant: Comparison of the Environmental Performance with Other Renewable Energy Systems," Sustainability, MDPI, vol. 12(7), pages 1-29, April.
    11. Nock, Destenie & Levin, Todd & Baker, Erin, 2020. "Changing the policy paradigm: A benefit maximization approach to electricity planning in developing countries," Applied Energy, Elsevier, vol. 264(C).
    12. Stracqualursi, Erika & Rosato, Antonello & Di Lorenzo, Gianfranco & Panella, Massimo & Araneo, Rodolfo, 2023. "Systematic review of energy theft practices and autonomous detection through artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    13. Savian, Fernando de Souza & Siluk, Julio Cezar Mairesse & Garlet, Taís Bisognin & do Nascimento, Felipe Moraes & Pinheiro, José Renes & Vale, Zita, 2021. "Non-technical losses: A systematic contemporary article review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    14. Gkousis, Spiros & Thomassen, Gwenny & Welkenhuysen, Kris & Compernolle, Tine, 2022. "Dynamic life cycle assessment of geothermal heat production from medium enthalpy hydrothermal resources," Applied Energy, Elsevier, vol. 328(C).
    15. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    16. Briones Hidrovo, Andrei & Uche, Javier & Martínez-Gracia, Amaya, 2017. "Accounting for GHG net reservoir emissions of hydropower in Ecuador," Renewable Energy, Elsevier, vol. 112(C), pages 209-221.
    17. Kaldellis, J.K. & Apostolou, D., 2017. "Life cycle energy and carbon footprint of offshore wind energy. Comparison with onshore counterpart," Renewable Energy, Elsevier, vol. 108(C), pages 72-84.
    18. Zhang, Ruirui & Wang, Guiling & Shen, Xiaoxu & Wang, Jinfeng & Tan, Xianfeng & Feng, Shoutao & Hong, Jinglan, 2020. "Is geothermal heating environmentally superior than coal fired heating in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    19. Costa-Campi, Maria Teresa & Daví-Arderius, Daniel & Trujillo-Baute, Elisa, 2018. "The economic impact of electricity losses," Energy Economics, Elsevier, vol. 75(C), pages 309-322.
    20. Nock, Destenie & Baker, Erin, 2019. "Holistic multi-criteria decision analysis evaluation of sustainable electric generation portfolios: New England case study," Applied Energy, Elsevier, vol. 242(C), pages 655-673.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:269:y:2023:i:c:s0360544223001299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.