IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v7y2017i11d10.1038_nclimate3410.html
   My bibliography  Save this article

Brazilian sugarcane ethanol as an expandable green alternative to crude oil use

Author

Listed:
  • Deepak Jaiswal

    (Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana
    University of Campinas)

  • Amanda P. De Souza

    (Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana
    Institute of Biosciences, and the Systems and Synthetic Biology Center, University of São Paulo)

  • Søren Larsen

    (Luiz de Queiroz College of Agriculture, University of São Paulo
    Section for Forest, Nature and Biomass, University of Copenhagen
    Danish Energy Association)

  • David S. LeBauer

    (Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana
    National Center for Supercomputing Applications)

  • Fernando E. Miguez

    (Iowa State University Ames)

  • Gerd Sparovek

    (Luiz de Queiroz College of Agriculture, University of São Paulo)

  • Germán Bollero

    (University of Illinois Urbana)

  • Marcos S. Buckeridge

    (Institute of Biosciences, and the Systems and Synthetic Biology Center, University of São Paulo)

  • Stephen P. Long

    (Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana
    University of Illinois Urbana
    University of Illinois Urbana
    Lancaster Environment Centre, Lancaster University)

Abstract

Biofuels have lower CO2 emissions than fossil fuels, but competing land demands can limit expansion of production. This study shows Brazilian sugarcane ethanol could displace up to 13% of global crude oil consumption by 2045 whilst balancing forest conservation and future land demand for food.

Suggested Citation

  • Deepak Jaiswal & Amanda P. De Souza & Søren Larsen & David S. LeBauer & Fernando E. Miguez & Gerd Sparovek & Germán Bollero & Marcos S. Buckeridge & Stephen P. Long, 2017. "Brazilian sugarcane ethanol as an expandable green alternative to crude oil use," Nature Climate Change, Nature, vol. 7(11), pages 788-792, November.
  • Handle: RePEc:nat:natcli:v:7:y:2017:i:11:d:10.1038_nclimate3410
    DOI: 10.1038/nclimate3410
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nclimate3410
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nclimate3410?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lemos, Stella Vannucci & Salgado, Alexandre Pereira & Duarte, Alexandre & de Souza, Marco Antonio Alves & de Almeida Antunes, Fernanda, 2019. "Agroindustrial best practices that contribute to technical efficiency in Brazilian sugar and ethanol production mills," Energy, Elsevier, vol. 177(C), pages 397-411.
    2. Oliveira, Dyoni M. & Mota, Thatiane R. & Grandis, Adriana & de Morais, Gutierrez R. & de Lucas, Rosymar C. & Polizeli, Maria L.T.M. & Marchiosi, Rogério & Buckeridge, Marcos S. & Ferrarese-Filho, Osva, 2020. "Lignin plays a key role in determining biomass recalcitrance in forage grasses," Renewable Energy, Elsevier, vol. 147(P1), pages 2206-2217.
    3. Furui Xi & Runping Wang & Jusong Shi & Jinde Zhang & Yang Yu & Na Wang & Zhiyi Wang, 2022. "Spatio-Temporal Pattern and Conflict Identification of Production–Living–Ecological Space in the Yellow River Basin," Land, MDPI, vol. 11(5), pages 1-22, May.
    4. Carvalho, João Luís Nunes & Oliveira, Bruna Gonçalves & Cantarella, Heitor & Chagas, Matheus Ferreira & Gonzaga, Leandro Carolino & Lourenço, Késia Silva & Bordonal, Ricardo Oliveira & Bonomi, Antonio, 2021. "Implications of regional N2O–N emission factors on sugarcane ethanol emissions and granted decarbonization certificates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Umanath Malaiarasan & R. Paramasivam & K. Thomas Felix & S. J. Balaji, 2020. "Simultaneous equation model for Indian sugar sector," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 22(1), pages 113-141, June.
    6. Luis Ramirez Camargo & Gabriel Castro & Katharina Gruber & Jessica Jewell & Michael Klingler & Olga Turkovska & Elisabeth Wetterlund & Johannes Schmidt, 2022. "Pathway to a land-neutral expansion of Brazilian renewable fuel production," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Goetz, Ariane & Searchinger, Tim & Beringer, Tim & German, Laura & McKay, Ben & Oliveira, Gustavo de L.T. & Hunsberger, Carol, 2018. "Reply to commentary on the special issue Scaling up biofuels? A critical look at expectations, performance and governance," Energy Policy, Elsevier, vol. 118(C), pages 658-665.
    8. Oliveira, Dener M.S. & Cherubin, Maurício R. & Franco, André L.C. & Santos, Augusto S. & Gelain, Jaquelini G. & Dias, Naissa M.S. & Diniz, Tatiana R. & Almeida, Alexandre N. & Feigl, Brigitte J. & Dav, 2019. "Is the expansion of sugarcane over pasturelands a sustainable strategy for Brazil's bioenergy industry?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 346-355.
    9. Negrão, Djanira R. & Grandis, Adriana & Buckeridge, Marcos S. & Rocha, George J.M. & Leal, Manoel Regis L.V. & Driemeier, Carlos, 2021. "Inorganics in sugarcane bagasse and straw and their impacts for bioenergy and biorefining: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    10. Nariê Rinke Dias de Souza & Bruno Colling Klein & Mateus Ferreira Chagas & Otavio Cavalett & Antonio Bonomi, 2021. "Towards Comparable Carbon Credits: Harmonization of LCA Models of Cellulosic Biofuels," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    11. Goldemberg, José & Souza, Glaucia Mendes & Maciel-Filho, Rubens & Cantarella, Heitor, 2018. "Scaling up biofuels? A critical look at expectations performance and governance," Energy Policy, Elsevier, vol. 118(C), pages 655-657.
    12. Gustavo V. Popin & Arthur K. B. Santos & Thiago de P. Oliveira & Plínio B. Camargo & Carlos E. P. Cerri & Marcos Siqueira-Neto, 2020. "Sugarcane straw management for bioenergy: effects of global warming on greenhouse gas emissions and soil carbon storage," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(4), pages 559-577, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:7:y:2017:i:11:d:10.1038_nclimate3410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.