IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v149y2021ics1364032121007061.html
   My bibliography  Save this article

Implications of regional N2O–N emission factors on sugarcane ethanol emissions and granted decarbonization certificates

Author

Listed:
  • Carvalho, João Luís Nunes
  • Oliveira, Bruna Gonçalves
  • Cantarella, Heitor
  • Chagas, Matheus Ferreira
  • Gonzaga, Leandro Carolino
  • Lourenço, Késia Silva
  • Bordonal, Ricardo Oliveira
  • Bonomi, Antonio

Abstract

Reducing greenhouse gas (GHG) emissions by substituting fossil fuels depends on how biofuels are produced and how emissions are calculated. Nitrous oxide (N2O) emissions from synthetic and organic N fertilizers are important sources of GHG from sugarcane ethanol. This study aimed to synthesize the literature information and derive regional N2O emissions factors (EFs) for N fertilizers according to Tier 2 approach. This study also evaluated how the use of Tier 2 affects emissions compared with those obtained by the IPCC Tier 1. Moreover, this study examined how N fertilizers can affect GHG emissions and the earning of decarbonization certificates (CBIOs) by ethanol producers. For an ethanol distillery producing 339 million liters annually, the use of Tier 1 and Tier 2 resulted in emissions of 176.5 and 145.2 Gg CO2eq, whereas for the same amount of energy, gasoline would emit 661.8 Gg CO2eq. The addition of nitrification inhibitors (NIs) to N fertilizers and improvements in vinasse/fertilizer management further reduced emissions compared with Tier 2. In Tier 1, the GHG emission savings would result 485,270 CBIOs, worth 4.85 million US$ at US$10 per CBIO. But if the IPCC Tier 2 is considered, the annual CBIOs would be worth 5.17 million US$. Using NIs and improving vinasse/fertilizer management may bring an additional US$ 31,700 and US$ 48,000 revenue above that of Tier 2. Public and sectorial policies behind decarbonization certificates can encourage farmers and decision-makers to pursue more efficient and economical solutions to further decrease GHG emissions and improve the sustainability of ethanol.

Suggested Citation

  • Carvalho, João Luís Nunes & Oliveira, Bruna Gonçalves & Cantarella, Heitor & Chagas, Matheus Ferreira & Gonzaga, Leandro Carolino & Lourenço, Késia Silva & Bordonal, Ricardo Oliveira & Bonomi, Antonio, 2021. "Implications of regional N2O–N emission factors on sugarcane ethanol emissions and granted decarbonization certificates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
  • Handle: RePEc:eee:rensus:v:149:y:2021:i:c:s1364032121007061
    DOI: 10.1016/j.rser.2021.111423
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121007061
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111423?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoefnagels, Ric & Smeets, Edward & Faaij, André, 2010. "Greenhouse gas footprints of different biofuel production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1661-1694, September.
    2. Deepak Jaiswal & Amanda P. De Souza & Søren Larsen & David S. LeBauer & Fernando E. Miguez & Gerd Sparovek & Germán Bollero & Marcos S. Buckeridge & Stephen P. Long, 2017. "Brazilian sugarcane ethanol as an expandable green alternative to crude oil use," Nature Climate Change, Nature, vol. 7(11), pages 788-792, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Canabarro, N.I. & Silva-Ortiz, P. & Nogueira, L.A.H. & Cantarella, H. & Maciel-Filho, R. & Souza, G.M., 2023. "Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    2. Sumitkumar, Rathor & Al-Sumaiti, Ameena Saad, 2024. "Shared autonomous electric vehicle: Towards social economy of energy and mobility from power-transportation nexus perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    3. Joel José de Andrade & Emídio Cantídio Almeida de Oliveira & Amanda Michele dos Santos Lima & Gabriela Priscila Sena Amorim & Ester Souza Oliveira & Fernando José Freire & Wagner Sandro de Moura Adeli, 2024. "Foliar Fertilization Improves the Nitrogen Nutrition of Sugarcane," Agriculture, MDPI, vol. 14(11), pages 1-12, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nariê Rinke Dias de Souza & Bruno Colling Klein & Mateus Ferreira Chagas & Otavio Cavalett & Antonio Bonomi, 2021. "Towards Comparable Carbon Credits: Harmonization of LCA Models of Cellulosic Biofuels," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    2. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    3. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    4. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    5. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    6. Umanath Malaiarasan & R. Paramasivam & K. Thomas Felix & S. J. Balaji, 2020. "Simultaneous equation model for Indian sugar sector," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 22(1), pages 113-141, June.
    7. Sokka, L. & Sinkko, T. & Holma, A. & Manninen, K. & Pasanen, K. & Rantala, M. & Leskinen, P., 2016. "Environmental impacts of the national renewable energy targets – A case study from Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1599-1610.
    8. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    9. van der Hilst, F. & Lesschen, J.P. & van Dam, J.M.C. & Riksen, M. & Verweij, P.A. & Sanders, J.P.M. & Faaij, A.P.C., 2012. "Spatial variation of environmental impacts of regional biomass chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2053-2069.
    10. Dutta, Kasturi & Daverey, Achlesh & Lin, Jih-Gaw, 2014. "Evolution retrospective for alternative fuels: First to fourth generation," Renewable Energy, Elsevier, vol. 69(C), pages 114-122.
    11. Dupoux, Marion, 2019. "The land use change time-accounting failure," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    12. Somorin, Tosin Onabanjo & Di Lorenzo, Giuseppina & Kolios, Athanasios J., 2017. "Life-cycle assessment of self-generated electricity in Nigeria and Jatropha biodiesel as an alternative power fuel," Renewable Energy, Elsevier, vol. 113(C), pages 966-979.
    13. Borrion, Aiduan Li & McManus, Marcelle C. & Hammond, Geoffrey P., 2012. "Environmental life cycle assessment of lignocellulosic conversion to ethanol: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4638-4650.
    14. Yang, Q. & Chen, G.Q., 2013. "Greenhouse gas emissions of corn–ethanol production in China," Ecological Modelling, Elsevier, vol. 252(C), pages 176-184.
    15. Jonker, J.G.G. & Junginger, H.M. & Verstegen, J.A. & Lin, T. & Rodríguez, L.F. & Ting, K.C. & Faaij, A.P.C. & van der Hilst, F., 2016. "Supply chain optimization of sugarcane first generation and eucalyptus second generation ethanol production in Brazil," Applied Energy, Elsevier, vol. 173(C), pages 494-510.
    16. Buytaert, V. & Muys, B. & Devriendt, N. & Pelkmans, L. & Kretzschmar, J.G. & Samson, R., 2011. "Towards integrated sustainability assessment for energetic use of biomass: A state of the art evaluation of assessment tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3918-3933.
    17. Collotta, M. & Champagne, P. & Tomasoni, G. & Alberti, M. & Busi, L. & Mabee, W., 2019. "Critical indicators of sustainability for biofuels: An analysis through a life cycle sustainabilty assessment perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    18. Lopes Silva, Diogo Aparecido & Delai, Ivete & Delgado Montes, Mary Laura & Roberto Ometto, Aldo, 2014. "Life cycle assessment of the sugarcane bagasse electricity generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 532-547.
    19. Reyes Valle, C. & Villanueva Perales, A.L. & Vidal-Barrero, F. & Ollero, P., 2015. "Integrated economic and life cycle assessment of thermochemical production of bioethanol to reduce production cost by exploiting excess of greenhouse gas savings," Applied Energy, Elsevier, vol. 148(C), pages 466-475.
    20. Negrão, Djanira R. & Grandis, Adriana & Buckeridge, Marcos S. & Rocha, George J.M. & Leal, Manoel Regis L.V. & Driemeier, Carlos, 2021. "Inorganics in sugarcane bagasse and straw and their impacts for bioenergy and biorefining: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:149:y:2021:i:c:s1364032121007061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.