IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v15y2025i2d10.1038_s41558-024-02233-6.html
   My bibliography  Save this article

Climate change and terrigenous inputs decrease the efficiency of the future Arctic Ocean’s biological carbon pump

Author

Listed:
  • Laurent Oziel

    (Alfred-Wegener-Institut - Helmholtz-Zentrum für Polar- und Meeresforschung)

  • Özgür Gürses

    (Alfred-Wegener-Institut - Helmholtz-Zentrum für Polar- und Meeresforschung)

  • Sinhué Torres-Valdés

    (Alfred-Wegener-Institut - Helmholtz-Zentrum für Polar- und Meeresforschung)

  • Clara J. M. Hoppe

    (Alfred-Wegener-Institut - Helmholtz-Zentrum für Polar- und Meeresforschung)

  • Björn Rost

    (Alfred-Wegener-Institut - Helmholtz-Zentrum für Polar- und Meeresforschung
    University of Bremen)

  • Onur Karakuş

    (Alfred-Wegener-Institut - Helmholtz-Zentrum für Polar- und Meeresforschung
    Woods Hole Oceanographic Institution)

  • Christopher Danek

    (Alfred-Wegener-Institut - Helmholtz-Zentrum für Polar- und Meeresforschung)

  • Boris P. Koch

    (Alfred-Wegener-Institut - Helmholtz-Zentrum für Polar- und Meeresforschung
    Bremerhaven University of Applied Sciences)

  • Cara Nissen

    (Alfred-Wegener-Institut - Helmholtz-Zentrum für Polar- und Meeresforschung
    University of Colorado Boulder)

  • Nikolay Koldunov

    (Alfred-Wegener-Institut - Helmholtz-Zentrum für Polar- und Meeresforschung)

  • Qiang Wang

    (Alfred-Wegener-Institut - Helmholtz-Zentrum für Polar- und Meeresforschung)

  • Christoph Völker

    (Alfred-Wegener-Institut - Helmholtz-Zentrum für Polar- und Meeresforschung)

  • Morten Iversen

    (Alfred-Wegener-Institut - Helmholtz-Zentrum für Polar- und Meeresforschung
    MARUM and University of Bremen)

  • Bennet Juhls

    (Helmholtz Centre for Polar and Marine Research)

  • Judith Hauck

    (Alfred-Wegener-Institut - Helmholtz-Zentrum für Polar- und Meeresforschung)

Abstract

The Arctic experiences climate changes that are among the fastest in the world and affect all Earth system components. Despite expected increase in terrigenous inputs to the Arctic Ocean, their impacts on biogeochemical cycles are currently largely neglected in IPCC-like models. Here we used a state-of-the-art high-resolution ocean biogeochemistry model that includes carbon and nutrient inputs from rivers and coastal erosion to produce twenty-first-century pan-Arctic projections. Surprisingly, even with an anticipated rise in primary production across a wide range of emission scenarios, our findings indicate that climate change will lead to a counterintuitive 40% reduction in the efficiency of the Arctic’s biological carbon pump by 2100, to which terrigenous inputs contribute 10%. Terrigenous inputs will also drive intense coastal CO2 outgassing, reducing the Arctic Ocean’s carbon sink by at least 10% (33 TgC yr−1). These unexpected reinforced feedback, mostly due to accelerated remineralization rates, lower the Arctic Ocean’s capacity for sequestering carbon.

Suggested Citation

  • Laurent Oziel & Özgür Gürses & Sinhué Torres-Valdés & Clara J. M. Hoppe & Björn Rost & Onur Karakuş & Christopher Danek & Boris P. Koch & Cara Nissen & Nikolay Koldunov & Qiang Wang & Christoph Völker, 2025. "Climate change and terrigenous inputs decrease the efficiency of the future Arctic Ocean’s biological carbon pump," Nature Climate Change, Nature, vol. 15(2), pages 171-179, February.
  • Handle: RePEc:nat:natcli:v:15:y:2025:i:2:d:10.1038_s41558-024-02233-6
    DOI: 10.1038/s41558-024-02233-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-024-02233-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-024-02233-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Birgit Wild & Natalia Shakhova & Oleg Dudarev & Alexey Ruban & Denis Kosmach & Vladimir Tumskoy & Tommaso Tesi & Hanna Grimm & Inna Nybom & Felipe Matsubara & Helena Alexanderson & Martin Jakobsson & , 2022. "Organic matter composition and greenhouse gas production of thawing subsea permafrost in the Laptev Sea," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Claudia Wekerle & Rebecca McPherson & Wilken-Jon von Appen & Qiang Wang & Ralph Timmermann & Patrick Scholz & Sergey Danilov & Qi Shu & Torsten Kanzow, 2024. "Atlantic Water warming increases melt below Northeast Greenland’s last floating ice tongue," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Xinyue Li & Qiang Wang & Sergey Danilov & Nikolay Koldunov & Caili Liu & Vasco Müller & Dmitry Sidorenko & Thomas Jung, 2024. "Author Correction: Eddy activity in the Arctic Ocean projected to surge in a warming world," Nature Climate Change, Nature, vol. 14(4), pages 407-407, April.
    4. Xinyue Li & Qiang Wang & Sergey Danilov & Nikolay Koldunov & Caili Liu & Vasco Müller & Dmitry Sidorenko & Thomas Jung, 2024. "Eddy activity in the Arctic Ocean projected to surge in a warming world," Nature Climate Change, Nature, vol. 14(2), pages 156-162, February.
    5. Mathieu Ardyna & Kevin Robert Arrigo, 2020. "Phytoplankton dynamics in a changing Arctic Ocean," Nature Climate Change, Nature, vol. 10(10), pages 892-903, October.
    6. Cara Nissen & Nicole S. Lovenduski & Cassandra M. Brooks & Mario Hoppema & Ralph Timmermann & Judith Hauck, 2024. "Severe 21st-century ocean acidification in Antarctic Marine Protected Areas," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Cara Nissen & Ralph Timmermann & Mario Hoppema & Özgür Gürses & Judith Hauck, 2022. "Abruptly attenuated carbon sequestration with Weddell Sea dense waters by 2100," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chelsea W. Koch & Thomas A. Brown & Rémi Amiraux & Carla Ruiz-Gonzalez & Maryam MacCorquodale & Gustavo A. Yunda-Guarin & Doreen Kohlbach & Lisa L. Loseto & Bruno Rosenberg & Nigel E. Hussey & Steve H, 2023. "Year-round utilization of sea ice-associated carbon in Arctic ecosystems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Yuanqi Wang & Zhixuan Feng & Peigen Lin & Hongjun Song & Jicai Zhang & Hui Wu & Haiyan Jin & Jianfang Chen & Di Qi & Jacqueline M. Grebmeier, 2024. "Enhanced wind mixing and deepened mixed layer in the Pacific Arctic shelf seas with low summer sea ice," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Chengzhen Zhou & Maodian Liu & Robert P. Mason & Prakhin Assavapanuvat & Nikki H. Zhang & Thomas S. Bianchi & Qianru Zhang & Xiaolong Li & Ruoyu Sun & Jiubin Chen & Xuejun Wang & Peter A. Raymond, 2025. "Warming-induced retreat of West Antarctic glaciers weakened carbon sequestration ability but increased mercury enrichment," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    4. Xianxian Han & Andrew L. Stewart & Dake Chen & Markus Janout & Xiaohui Liu & Zhaomin Wang & Arnold L. Gordon, 2024. "Circum-Antarctic bottom water formation mediated by tides and topographic waves," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Tian Li & Stefan Hofer & Geir Moholdt & Adam Igneczi & Konrad Heidler & Xiao Xiang Zhu & Jonathan Bamber, 2025. "Pervasive glacier retreats across Svalbard from 1985 to 2023," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    6. Clara J. M. Hoppe & Niels Fuchs & Dirk Notz & Philip Anderson & Philipp Assmy & Jørgen Berge & Gunnar Bratbak & Gaël Guillou & Alexandra Kraberg & Aud Larsen & Benoit Lebreton & Eva Leu & Magnus Lucas, 2024. "Photosynthetic light requirement near the theoretical minimum detected in Arctic microalgae," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Michael P. Meredith, 2022. "Carbon storage shifts around Antarctica," Nature Communications, Nature, vol. 13(1), pages 1-3, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:15:y:2025:i:2:d:10.1038_s41558-024-02233-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.