IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54733-w.html
   My bibliography  Save this article

Enhanced wind mixing and deepened mixed layer in the Pacific Arctic shelf seas with low summer sea ice

Author

Listed:
  • Yuanqi Wang

    (East China Normal University)

  • Zhixuan Feng

    (East China Normal University
    Ministry of Natural Resources)

  • Peigen Lin

    (Shanghai Jiao Tong University)

  • Hongjun Song

    (Ministry of Natural Resources)

  • Jicai Zhang

    (East China Normal University)

  • Hui Wu

    (East China Normal University
    East China Normal University)

  • Haiyan Jin

    (Ministry of Natural Resources
    Shanghai Jiao Tong University
    Ministry of Natural Resources)

  • Jianfang Chen

    (Ministry of Natural Resources
    Shanghai Jiao Tong University
    Ministry of Natural Resources)

  • Di Qi

    (Jimei University)

  • Jacqueline M. Grebmeier

    (University of Maryland Center for Environmental Science)

Abstract

The Arctic Ocean has experienced significant sea ice loss over recent decades, shifting towards a thinner and more mobile seasonal ice regime. However, the impacts of these transformations on the upper ocean dynamics of the biologically productive Pacific Arctic continental shelves remain underexplored. Here, we quantified the summer upper mixed layer depth and analyzed its interannual to decadal evolution with sea ice and atmospheric forcing, using hydrographic observations and model reanalysis from 1996 to 2021. Before 2006, a shoaling summer mixed layer was associated with sea ice loss and surface warming. After 2007, however, the upper mixed layer reversed to a generally deepening trend due to markedly lengthened open water duration, enhanced wind-induced mixing, and reduced ice meltwater input. Our findings reveal a shift in the primary drivers of upper ocean dynamics, with surface buoyancy flux dominant initially, followed by a shift to wind forcing despite continued sea ice decline. These changes in upper ocean structure and forcing mechanisms may have substantial implications for the marine ecosystem, potentially contributing to unusual fall phytoplankton blooms and intensified ocean acidification observed in the past decade.

Suggested Citation

  • Yuanqi Wang & Zhixuan Feng & Peigen Lin & Hongjun Song & Jicai Zhang & Hui Wu & Haiyan Jin & Jianfang Chen & Di Qi & Jacqueline M. Grebmeier, 2024. "Enhanced wind mixing and deepened mixed layer in the Pacific Arctic shelf seas with low summer sea ice," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54733-w
    DOI: 10.1038/s41467-024-54733-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54733-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54733-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mathieu Ardyna & Kevin Robert Arrigo, 2020. "Phytoplankton dynamics in a changing Arctic Ocean," Nature Climate Change, Nature, vol. 10(10), pages 892-903, October.
    2. Guancheng Li & Lijing Cheng & Jiang Zhu & Kevin E. Trenberth & Michael E. Mann & John P. Abraham, 2020. "Increasing ocean stratification over the past half-century," Nature Climate Change, Nature, vol. 10(12), pages 1116-1123, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhibin Yang & Zhao Jing & Xiaoming Zhai & Clément Vic & Hui Sun & Casimir Lavergne & Man Yuan, 2024. "Enhanced generation of internal tides under global warming," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Chelsea W. Koch & Thomas A. Brown & Rémi Amiraux & Carla Ruiz-Gonzalez & Maryam MacCorquodale & Gustavo A. Yunda-Guarin & Doreen Kohlbach & Lisa L. Loseto & Bruno Rosenberg & Nigel E. Hussey & Steve H, 2023. "Year-round utilization of sea ice-associated carbon in Arctic ecosystems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Alex S. J. Wyatt & James J. Leichter & Libe Washburn & Li Kui & Peter J. Edmunds & Scott C. Burgess, 2023. "Hidden heatwaves and severe coral bleaching linked to mesoscale eddies and thermocline dynamics," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Zhi Li & Matthew H. England & Sjoerd Groeskamp, 2023. "Recent acceleration in global ocean heat accumulation by mode and intermediate waters," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Helene A. L. Hollitzer & Lavinia Patara & Jens Terhaar & Andreas Oschlies, 2024. "Competing effects of wind and buoyancy forcing on ocean oxygen trends in recent decades," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Kenza Himmich & Martin Vancoppenolle & Gurvan Madec & Jean-Baptiste Sallée & Paul R. Holland & Marion Lebrun, 2023. "Drivers of Antarctic sea ice advance," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Clara J. M. Hoppe & Niels Fuchs & Dirk Notz & Philip Anderson & Philipp Assmy & Jørgen Berge & Gunnar Bratbak & Gaël Guillou & Alexandra Kraberg & Aud Larsen & Benoit Lebreton & Eva Leu & Magnus Lucas, 2024. "Photosynthetic light requirement near the theoretical minimum detected in Arctic microalgae," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Pearse J. Buchanan & Olivier Aumont & Laurent Bopp & Claire Mahaffey & Alessandro Tagliabue, 2021. "Impact of intensifying nitrogen limitation on ocean net primary production is fingerprinted by nitrogen isotopes," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Fenzhen Su & Rong Fan & Fengqin Yan & Michael Meadows & Vincent Lyne & Po Hu & Xiangzhou Song & Tianyu Zhang & Zenghong Liu & Chenghu Zhou & Tao Pei & Xiaomei Yang & Yunyan Du & Zexun Wei & Fan Wang &, 2023. "Widespread global disparities between modelled and observed mid-depth ocean currents," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Tianshi Du & Zhao Jing & Lixin Wu & Hong Wang & Zhaohui Chen & Xiaohui Ma & Bolan Gan & Haiyuan Yang, 2022. "Growth of ocean thermal energy conversion resources under greenhouse warming regulated by oceanic eddies," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Li, Zuchuan & Lin, Yajuan & Cassar, Nicolas, 2024. "The influence of phytoplankton size fractions on the carbon export ratio in the surface ocean," Ecological Modelling, Elsevier, vol. 495(C).
    12. Fukai Liu & Fengfei Song & Yiyong Luo, 2024. "Human-induced intensified seasonal cycle of sea surface temperature," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54733-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.