IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v12y2022i3d10.1038_s41558-022-01282-z.html
   My bibliography  Save this article

Increased ENSO sea surface temperature variability under four IPCC emission scenarios

Author

Listed:
  • Wenju Cai

    (Ocean University of China and Qingdao National Laboratory for Marine Science and Technology
    CSIRO Oceans and Atmosphere)

  • Benjamin Ng

    (CSIRO Oceans and Atmosphere)

  • Guojian Wang

    (Ocean University of China and Qingdao National Laboratory for Marine Science and Technology
    CSIRO Oceans and Atmosphere)

  • Agus Santoso

    (CSIRO Oceans and Atmosphere
    The University of New South Wales)

  • Lixin Wu

    (Ocean University of China and Qingdao National Laboratory for Marine Science and Technology)

  • Kai Yang

    (Chinese Academy of Sciences)

Abstract

Sea surface temperature (SST) variability of El Niño–Southern Oscillation (ENSO) underpins its global impact, and its future change is a long-standing science issue. In its sixth assessment, the IPCC reports no systematic change in ENSO SST variability under any emission scenarios considered. However, comparison between the 20th and 21st century shows a robust increase in century-long ENSO SST variability under four IPCC plausible emission scenarios.

Suggested Citation

  • Wenju Cai & Benjamin Ng & Guojian Wang & Agus Santoso & Lixin Wu & Kai Yang, 2022. "Increased ENSO sea surface temperature variability under four IPCC emission scenarios," Nature Climate Change, Nature, vol. 12(3), pages 228-231, March.
  • Handle: RePEc:nat:natcli:v:12:y:2022:i:3:d:10.1038_s41558-022-01282-z
    DOI: 10.1038/s41558-022-01282-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-022-01282-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-022-01282-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui Chen & Yishuai Jin & Zhengyu Liu & Daoxun Sun & Xianyao Chen & Michael J. McPhaden & Antonietta Capotondi & Xiaopei Lin, 2024. "Central-Pacific El Niño-Southern Oscillation less predictable under greenhouse warming," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Yi Liu & Wenju Cai & Xiaopei Lin & Ziguang Li & Ying Zhang, 2023. "Nonlinear El Niño impacts on the global economy under climate change," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Tao Geng & Wenju Cai & Lixin Wu & Agus Santoso & Guojian Wang & Zhao Jing & Bolan Gan & Yun Yang & Shujun Li & Shengpeng Wang & Zhaohui Chen & Michael J. McPhaden, 2022. "Emergence of changing Central-Pacific and Eastern-Pacific El Niño-Southern Oscillation in a warming climate," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Neethu C & K V Ramesh, 2023. "Projected changes in heat wave characteristics over India," Climatic Change, Springer, vol. 176(10), pages 1-26, October.
    5. Mingna Wu & Chao Li & Matthew Collins & Hongmei Li & Xiaolong Chen & Tianjun Zhou & Zhongshi Zhang, 2024. "Early emergence and determinants of human-induced Walker circulation weakening," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Hosmay Lopez & Sang-Ki Lee & Dongmin Kim & Andrew T. Wittenberg & Sang-Wook Yeh, 2022. "Projections of faster onset and slower decay of El Niño in the 21st century," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:12:y:2022:i:3:d:10.1038_s41558-022-01282-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.