IDEAS home Printed from https://ideas.repec.org/a/mup/actaun/actaun_2017065061889.html
   My bibliography  Save this article

Comparing Entropy and Beta as Measures of Risk in Asset Pricing

Author

Listed:
  • Galina Deeva

    (Department of Finance, Faculty of Economics and Administration, Masaryk University, Lipová 41a, 602 00 Brno, Czech Republic)

Abstract

The paper establishes entropy as a measure of risk in asset pricing models by comparing its explanatory power with that of classic capital asset pricing model's beta to describe the diversity in expected risk premiums. Three different non-parametric estimation procedures are considered to evaluate financial entropy, namely kernel density estimated Shannon entropy, kernel density estimated Rényi entropy and maximum likelihood Miller-Madow estimated Shannon entropy. The comparison is provided based on the European stock market data, for which the basic risk-return trade-off is generally negative. Kernel density estimated Shannon entropy provides the most efficient results not dependent on the choice of the market benchmark and without imposing any prior model restrictions.

Suggested Citation

  • Galina Deeva, 2017. "Comparing Entropy and Beta as Measures of Risk in Asset Pricing," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 65(6), pages 1889-1894.
  • Handle: RePEc:mup:actaun:actaun_2017065061889
    DOI: 10.11118/actaun201765061889
    as

    Download full text from publisher

    File URL: http://acta.mendelu.cz/doi/10.11118/actaun201765061889.html
    Download Restriction: free of charge

    File URL: http://acta.mendelu.cz/doi/10.11118/actaun201765061889.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.11118/actaun201765061889?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiuping Xu & Xiaoyang Zhou & Desheng Wu, 2011. "Portfolio selection using λ mean and hybrid entropy," Annals of Operations Research, Springer, vol. 185(1), pages 213-229, May.
    2. Aslanidis, Nektarios & Christiansen, Charlotte & Savva, Christos S., 2016. "Risk-return trade-off for European stock markets," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 84-103.
    3. Mihály Ormos & Dávid Zibriczky, 2014. "Entropy-Based Financial Asset Pricing," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-21, December.
    4. Maasoumi, Esfandiar & Racine, Jeff, 2002. "Entropy and predictability of stock market returns," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 291-312, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Noe Rodriguez-Rodriguez & Octavio Miramontes, 2022. "Shannon entropy: an econophysical approach to cryptocurrency portfolios," Papers 2210.02633, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Chiew & Judy Qiu & Sirimon Treepongkaruna & Jiping Yang & Chenxiao Shi, 2019. "The predictive ability of the expected utility-entropy based fund rating approach: A comparison investigation with Morningstar ratings in US," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-22, April.
    2. Vishwas Kukreti & Hirdesh K. Pharasi & Priya Gupta & Sunil Kumar, 2020. "A perspective on correlation-based financial networks and entropy measures," Papers 2004.09448, arXiv.org.
    3. Ponta, Linda & Carbone, Anna, 2018. "Information measure for financial time series: Quantifying short-term market heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 132-144.
    4. Gruber, Lutz F. & West, Mike, 2017. "Bayesian online variable selection and scalable multivariate volatility forecasting in simultaneous graphical dynamic linear models," Econometrics and Statistics, Elsevier, vol. 3(C), pages 3-22.
    5. Salois, Matthew & Moss, Charles, 2010. "An Information Approach to the Dynamics in Farm Income: Implications for Farmland Markets," MPRA Paper 26850, University Library of Munich, Germany.
    6. Dionisio, Andreia & Menezes, Rui & Mendes, Diana & Vidigal Da Silva, Jacinto, 2007. "Nonlinear Dynamics Within Macroeconomic Factors And Stock Market In Portugal, 1993-2003," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 7(2), pages 57-70.
    7. Stefania D'Amico, 2004. "Density Estimation and Combination under Model Ambiguity," Computing in Economics and Finance 2004 273, Society for Computational Economics.
    8. Kim, Eung-Bin & Byun, Suk-Joon, 2021. "Risk, ambiguity, and equity premium: International evidence," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 321-335.
    9. Duran, Miguel A., 2022. "The risk–return relation in the corporate loan market," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    10. Kwang-il Choe & Joshua Krausz & Kiseok Nam, 2011. "Technical trading rules for nonlinear dynamics of stock returns: evidence from the G-7 stock markets," Review of Quantitative Finance and Accounting, Springer, vol. 36(3), pages 323-353, April.
    11. Pedro Piccoli & Newton C. A. da Costa & Wesley Vieira da Silva & June A. W. Cruz, 2018. "Investor sentiment and the risk–return tradeoff in the Brazilian market," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 599-618, November.
    12. Esfandiar Maasoumi & Melinda Pitts & Ke Wu, 2014. "The Gap between the Conditional Wage Distributions of Incumbents and the Newly Hired Employees: Decomposition and Uniform Ordering," Advances in Econometrics, in: Essays in Honor of Peter C. B. Phillips, volume 33, pages 587-612, Emerald Group Publishing Limited.
    13. Matilla-García, Mariano & Marín, Manuel Ruiz, 2010. "A new test for chaos and determinism based on symbolic dynamics," Journal of Economic Behavior & Organization, Elsevier, vol. 76(3), pages 600-614, December.
    14. L. Ponta & A. Carbone, 2019. "Quantifying horizon dependence of asset prices: a cluster entropy approach," Papers 1908.00257, arXiv.org, revised Apr 2020.
    15. Aslanidis, Nektarios & Christiansen, Charlotte & Savva, Christos S., 2020. "Flight-to-safety and the risk-return trade-off: European evidence," Finance Research Letters, Elsevier, vol. 35(C).
    16. David G. McMillan, 2009. "Non-linear interest rate dynamics and forecasting: evidence for US and Australian interest rates," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 14(2), pages 139-155.
    17. Seyma Caliskan Cavdar & Alev Dilek Aydin, 2015. "An Empirical Analysis for the Prediction of a Financial Crisis in Turkey through the Use of Forecast Error Measures," JRFM, MDPI, vol. 8(3), pages 1-18, August.
    18. Luca Bagnato & Lucio De Capitani & Antonio Punzo, 2014. "Testing Serial Independence via Density-Based Measures of Divergence," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 627-641, September.
    19. Dong Hee Suh, 2018. "An Entropy Approach to Regional Differences in Carbon Dioxide Emissions: Implications for Ethanol Usage," Sustainability, MDPI, vol. 10(1), pages 1-11, January.
    20. Zoia, Maria Grazia & Biffi, Paola & Nicolussi, Federica, 2018. "Value at risk and expected shortfall based on Gram-Charlier-like expansions," Journal of Banking & Finance, Elsevier, vol. 93(C), pages 92-104.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mup:actaun:actaun_2017065061889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://mendelu.cz/en/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.