IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2210.02633.html
   My bibliography  Save this paper

Shannon entropy: an econophysical approach to cryptocurrency portfolios

Author

Listed:
  • Noe Rodriguez-Rodriguez
  • Octavio Miramontes

Abstract

Cryptocurrency markets have attracted many interest for global investors because of their novelty, wide online availability, increasing capitalization and potential profits. In the econophysics tradition we show that many of the most available cryptocurrencies have return statistics that do not follow Gaussian distributions but heavy--tailed distributions instead. Entropy measures are also applied showing that portfolio diversification is a reasonable practice for decreasing return uncertainty.

Suggested Citation

  • Noe Rodriguez-Rodriguez & Octavio Miramontes, 2022. "Shannon entropy: an econophysical approach to cryptocurrency portfolios," Papers 2210.02633, arXiv.org.
  • Handle: RePEc:arx:papers:2210.02633
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2210.02633
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Imen Mahmoud & Kamel Naoui, 2017. "Measuring Systematic and Specific Risk: Approach Mean-Entropy," Asian Journal of Empirical Research, Asian Economic and Social Society, vol. 7(3), pages 42-60.
    2. Benoit Mandelbrot, 1967. "The Variation of Some Other Speculative Prices," The Journal of Business, University of Chicago Press, vol. 40, pages 393-393.
    3. A. Dionisio & R. Menezes & D. A. Mendes, 2006. "An econophysics approach to analyse uncertainty in financial markets: an application to the Portuguese stock market," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 50(1), pages 161-164, March.
    4. Galina Deeva, 2017. "Comparing Entropy and Beta as Measures of Risk in Asset Pricing," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 65(6), pages 1889-1894.
    5. Mihály Ormos & Dávid Zibriczky, 2014. "Entropy-Based Financial Asset Pricing," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-21, December.
    6. Imen Mahmoud & Kamel Naoui, 2017. "Measuring systematic and specific risk: Approach mean-entropy," Asian Journal of Empirical Research, Asian Economic and Social Society, vol. 7(3), pages 42-60, March.
    7. Chen, Wei & Xu, Huilin & Jia, Lifen & Gao, Ying, 2021. "Machine learning model for Bitcoin exchange rate prediction using economic and technology determinants," International Journal of Forecasting, Elsevier, vol. 37(1), pages 28-43.
    8. Smith, Eric & Foley, Duncan K., 2008. "Classical thermodynamics and economic general equilibrium theory," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 7-65, January.
    9. J. Barkley Rosser, Jr., 2021. "Foundations and Applications of Complexity Economics," Springer Books, Springer, number 978-3-030-70668-5, March.
    10. Saralees Nadarajah & Emmanuel Afuecheta & Stephen Chan, 2015. "A note on "Modelling exchange rate returns: which flexible distribution to use?"," Quantitative Finance, Taylor & Francis Journals, vol. 15(11), pages 1777-1785, November.
    11. Ebrahimi, Nader & Maasoumi, Esfandiar & Soofi, Ehsan S., 1999. "Ordering univariate distributions by entropy and variance," Journal of Econometrics, Elsevier, vol. 90(2), pages 317-336, June.
    12. Constantino Tsallis & Celia Anteneodo & Lisa Borland & Roberto Osorio, 2003. "Nonextensive statistical mechanics and economics," Papers cond-mat/0301307, arXiv.org.
    13. Tsallis, Constantino & Anteneodo, Celia & Borland, Lisa & Osorio, Roberto, 2003. "Nonextensive statistical mechanics and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 89-100.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandhya Devi & Sherman Page, 2022. "Tsallis Relative entropy from asymmetric distributions as a risk measure for financial portfolios," Papers 2205.13625, arXiv.org.
    2. Rashkovskiy, S.A., 2021. "Thermodynamics of markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    3. Sandhya Devi, 2019. "Financial Portfolios based on Tsallis Relative Entropy as the Risk Measure," Papers 1901.04945, arXiv.org, revised Mar 2019.
    4. Devi, Sandhya, 2018. "Financial Portfolios based on Tsallis Relative Entropy as the Risk Measure," MPRA Paper 91614, University Library of Munich, Germany.
    5. Till Massing, 2019. "What is the best Lévy model for stock indices? A comparative study with a view to time consistency," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 33(3), pages 277-344, September.
    6. Qin, Guyue & Shang, Pengjian, 2021. "Analysis of time series using a new entropy plane based on past entropy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    7. Diks, Cees & Hommes, Cars & Zeppini, Paolo, 2013. "More memory under evolutionary learning may lead to chaos," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 808-812.
    8. Tapiero, Oren J., 2013. "A maximum (non-extensive) entropy approach to equity options bid–ask spread," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(14), pages 3051-3060.
    9. Gu, Gao-Feng & Ren, Fei & Ni, Xiao-Hui & Chen, Wei & Zhou, Wei-Xing, 2010. "Empirical regularities of opening call auction in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(2), pages 278-286.
    10. Devi, Sandhya, 2021. "Asymmetric Tsallis distributions for modeling financial market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    11. Zhao, Pan & Pan, Jian & Yue, Qin & Zhang, Jinbo, 2021. "Pricing of financial derivatives based on the Tsallis statistical theory," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    12. Meyer-Gohde, Alexander, 2019. "Generalized entropy and model uncertainty," Journal of Economic Theory, Elsevier, vol. 183(C), pages 312-343.
    13. Jos'e Cl'audio do Nascimento, 2019. "Rational hyperbolic discounting," Papers 1910.05209, arXiv.org, revised Feb 2020.
    14. Billio, Monica & Casarin, Roberto & Costola, Michele & Pasqualini, Andrea, 2016. "An entropy-based early warning indicator for systemic risk," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 45(C), pages 42-59.
    15. Zunino, L. & Pérez, D.G. & Kowalski, A. & Martín, M.T. & Garavaglia, M. & Plastino, A. & Rosso, O.A., 2008. "Fractional Brownian motion, fractional Gaussian noise, and Tsallis permutation entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6057-6068.
    16. Kozaki, M. & Sato, A.-H., 2008. "Application of the Beck model to stock markets: Value-at-Risk and portfolio risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1225-1246.
    17. Ni, Xiao-Hui & Jiang, Zhi-Qiang & Gu, Gao-Feng & Ren, Fei & Chen, Wei & Zhou, Wei-Xing, 2010. "Scaling and memory in the non-Poisson process of limit order cancelation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2751-2761.
    18. Rodrigues, Ana Flávia P. & Cavalcante, Charles C. & Crisóstomo, Vicente L., 2019. "A projection pricing model for non-Gaussian financial returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    19. Nathan Lassance & Frédéric Vrins, 2021. "Minimum Rényi entropy portfolios," Annals of Operations Research, Springer, vol. 299(1), pages 23-46, April.
    20. Marcaccioli, Riccardo & Livan, Giacomo, 2020. "Maximum entropy approach to multivariate time series randomization," LSE Research Online Documents on Economics 115284, London School of Economics and Political Science, LSE Library.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2210.02633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.