IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v185y2011i1p213-22910.1007-s10479-009-0550-3.html
   My bibliography  Save this article

Portfolio selection using λ mean and hybrid entropy

Author

Listed:
  • Jiuping Xu
  • Xiaoyang Zhou
  • Desheng Wu

Abstract

This paper develops a λ mean-hybrid entropy model to deal with portfolio selection problem with both random uncertainty and fuzzy uncertainty. Solving this model provides the investor a tradeoff frontier between security return and risk. We model the security return as a triangular fuzzy random variable, where the investor’s individual preference is reflected by the pessimistic-optimistic parameter λ. We measure the security risk using the hybrid entropy in this model. Algorithm is developed to solve this bi-objective portfolio selection model. Beside, a numerical example is also presented to illustrate this approach. Copyright Springer Science+Business Media, LLC 2011

Suggested Citation

  • Jiuping Xu & Xiaoyang Zhou & Desheng Wu, 2011. "Portfolio selection using λ mean and hybrid entropy," Annals of Operations Research, Springer, vol. 185(1), pages 213-229, May.
  • Handle: RePEc:spr:annopr:v:185:y:2011:i:1:p:213-229:10.1007/s10479-009-0550-3
    DOI: 10.1007/s10479-009-0550-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-009-0550-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-009-0550-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soyer, Refik & Tanyeri, Kadir, 2006. "Bayesian portfolio selection with multi-variate random variance models," European Journal of Operational Research, Elsevier, vol. 171(3), pages 977-990, June.
    2. Abdelaziz, Fouad Ben & Aouni, Belaid & Fayedh, Rimeh El, 2007. "Multi-objective stochastic programming for portfolio selection," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1811-1823, March.
    3. Smimou, K. & Bector, C.R. & Jacoby, G., 2007. "A subjective assessment of approximate probabilities with a portfolio application," Research in International Business and Finance, Elsevier, vol. 21(2), pages 134-160, June.
    4. Simonelli, Maria Rosaria, 2005. "Indeterminacy in portfolio selection," European Journal of Operational Research, Elsevier, vol. 163(1), pages 170-176, May.
    5. Wu, Desheng Dash, 2009. "Performance evaluation: An integrated method using data envelopment analysis and fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 194(1), pages 227-235, April.
    6. Srichander Ramaswamy, 1998. "Portfolio selection using fuzzy decision theory," BIS Working Papers 59, Bank for International Settlements.
    7. Arenas Parra, M. & Bilbao Terol, A. & Rodriguez Uria, M. V., 2001. "A fuzzy goal programming approach to portfolio selection," European Journal of Operational Research, Elsevier, vol. 133(2), pages 287-297, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ponta, Linda & Carbone, Anna, 2018. "Information measure for financial time series: Quantifying short-term market heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 132-144.
    2. Tsaur, Ruey-Chyn, 2013. "Fuzzy portfolio model with different investor risk attitudes," European Journal of Operational Research, Elsevier, vol. 227(2), pages 385-390.
    3. Galina Deeva, 2017. "Comparing Entropy and Beta as Measures of Risk in Asset Pricing," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 65(6), pages 1889-1894.
    4. Vishwas Kukreti & Hirdesh K. Pharasi & Priya Gupta & Sunil Kumar, 2020. "A perspective on correlation-based financial networks and entropy measures," Papers 2004.09448, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hatem Masri, 2017. "A multiple stochastic goal programming approach for the agent portfolio selection problem," Annals of Operations Research, Springer, vol. 251(1), pages 179-192, April.
    2. Bilbao-Terol, Amelia & Arenas-Parra, Mar & Cañal-Fernández, Verónica, 2016. "A model based on Copula Theory for sustainable and social responsible investments," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 19(1), pages 55-76.
    3. Wei Chen, 2009. "Weighted portfolio selection models based on possibility theory," Fuzzy Information and Engineering, Springer, vol. 1(2), pages 115-127, June.
    4. Laila Messaoudi & Belaid Aouni & Abdelwaheb Rebai, 2017. "Fuzzy chance-constrained goal programming model for multi-attribute financial portfolio selection," Annals of Operations Research, Springer, vol. 251(1), pages 193-204, April.
    5. Aouni, Belaid & Colapinto, Cinzia & La Torre, Davide, 2014. "Financial portfolio management through the goal programming model: Current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 234(2), pages 536-545.
    6. Liu, Yong-Jun & Zhang, Wei-Guo & Zhang, Pu, 2013. "A multi-period portfolio selection optimization model by using interval analysis," Economic Modelling, Elsevier, vol. 33(C), pages 113-119.
    7. Cinzia Colapinto & Raja Jayaraman & Simone Marsiglio, 2017. "Multi-criteria decision analysis with goal programming in engineering, management and social sciences: a state-of-the art review," Annals of Operations Research, Springer, vol. 251(1), pages 7-40, April.
    8. Hirschberger, Markus & Qi, Yue & Steuer, Ralph E., 2010. "Large-scale MV efficient frontier computation via a procedure of parametric quadratic programming," European Journal of Operational Research, Elsevier, vol. 204(3), pages 581-588, August.
    9. Noushin Bagheri, 2021. "Deterministic goal programming approach for Islamic portfolio selection," Operational Research, Springer, vol. 21(3), pages 1447-1459, September.
    10. Vilkkumaa, Eeva & Liesiö, Juuso & Salo, Ahti, 2014. "Optimal strategies for selecting project portfolios using uncertain value estimates," European Journal of Operational Research, Elsevier, vol. 233(3), pages 772-783.
    11. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    12. Jang Ho Kim & Yongjae Lee & Woo Chang Kim & Frank J. Fabozzi, 2022. "Goal-based investing based on multi-stage robust portfolio optimization," Annals of Operations Research, Springer, vol. 313(2), pages 1141-1158, June.
    13. Fouad Ben Abdelaziz & Ray Saadaoui Mallek, 2018. "Multi-criteria optimal stopping methods applied to the portfolio optimisation problem," Annals of Operations Research, Springer, vol. 267(1), pages 29-46, August.
    14. Kanwal Iqbal Khan & Syed M. Waqar Azeem Naqvi & Muhammad Mudassar Ghafoor & Rana Shahid Imdad Akash, 2020. "Sustainable Portfolio Optimization with Higher-Order Moments of Risk," Sustainability, MDPI, vol. 12(5), pages 1-14, March.
    15. Kang, Yan-li & Tian, Jing-Song & Chen, Chen & Zhao, Gui-Yu & Li, Yuan-fu & Wei, Yu, 2021. "Entropy based robust portfolio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    16. Kamesh Korangi & Christophe Mues & Cristi'an Bravo, 2024. "Large-scale Time-Varying Portfolio Optimisation using Graph Attention Networks," Papers 2407.15532, arXiv.org.
    17. Alfred Mbairadjim Moussa & Jules Sadefo Kamdem, 2022. "A fuzzy multifactor asset pricing model," Annals of Operations Research, Springer, vol. 313(2), pages 1221-1241, June.
    18. Feng Yang & Dexiang Wu & Liang Liang & Gongbing Bi & Desheng Wu, 2011. "Supply chain DEA: production possibility set and performance evaluation model," Annals of Operations Research, Springer, vol. 185(1), pages 195-211, May.
    19. Shi, Qian & Lai, Xiaodong & Xie, Xin & Zuo, Jian, 2014. "Assessment of green building policies – A fuzzy impact matrix approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 203-211.
    20. Mila Bravo & Dylan Jones & David Pla-Santamaria & Francisco Salas-Molina, 2022. "Encompassing statistically unquantifiable randomness in goal programming: an application to portfolio selection," Operational Research, Springer, vol. 22(5), pages 5685-5706, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:185:y:2011:i:1:p:213-229:10.1007/s10479-009-0550-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.