IDEAS home Printed from https://ideas.repec.org/a/mup/actaun/actaun_2016064020683.html
   My bibliography  Save this article

Modelling Claim Frequency in Vehicle Insurance

Author

Listed:
  • Jiří Valecký

    (Department of Finance, Faculty of Economics, VŠB-TU Ostrava, Sokolská tř. 33, 701 21 Ostrava, Czech Republic)

Abstract

The paper is focused on modelling claim frequency and extends the work of Kafková and Křivánková, 2014 (Kafková, S., Křivánková, L. 2014. Generalized linear models in vehicle insurance. Acta universitatis agriculturae et silviculturae mendelianae brunensis, 62(2): 383-388). We showed that overdispersion, non-linear systematic component and interacted rating factors should be considered when the claim frequency is modelled. We detected overdispersion in the Poisson model and employed the negative-binomial model to show that considering heterogeneity over insurance policies yields better fit of the model. We also analysed the linear effect of continuous rating factors and their mutual influences. We showed that non-linearity and interactions between rating factors yield the better fit of the model, as well as new findings related to the analysis of claim frequency. All empirical models were estimated on the insurance portfolio of Czech insurance company collected during the years 2004-2008.

Suggested Citation

  • Jiří Valecký, 2016. "Modelling Claim Frequency in Vehicle Insurance," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 64(2), pages 683-689.
  • Handle: RePEc:mup:actaun:actaun_2016064020683
    DOI: 10.11118/actaun201664020683
    as

    Download full text from publisher

    File URL: http://acta.mendelu.cz/doi/10.11118/actaun201664020683.html
    Download Restriction: free of charge

    File URL: http://acta.mendelu.cz/doi/10.11118/actaun201664020683.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.11118/actaun201664020683?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Jong,Piet & Heller,Gillian Z., 2008. "Generalized Linear Models for Insurance Data," Cambridge Books, Cambridge University Press, number 9780521879149, October.
    2. Zaks, Yaniv & Frostig, Esther & Levikson, Benny, 2006. "Optimal Pricing of a Heterogeneous Portfolio for a Given Risk Level," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 161-185, May.
    3. Martin Branda, 2014. "Optimization Approaches to Multiplicative Tariff of Rates Estimation in Non-Life Insurance," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 31(05), pages 1-17.
    4. Patrick Royston & Douglas G. Altman, 1994. "Regression Using Fractional Polynomials of Continuous Covariates: Parsimonious Parametric Modelling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(3), pages 429-453, September.
    5. Renshaw, Arthur E., 1994. "Modelling the Claims Process in the Presence of Covariates," ASTIN Bulletin, Cambridge University Press, vol. 24(2), pages 265-285, November.
    6. Vern T. Farewell & Brian D.M. Tom & Patrick Royston, 2004. "The Impact of Dichotomization on the Efficiency of Testing for an Interaction Effect in Exponential Family Models," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 822-831, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiří Valecký, 2017. "Calculation of Solvency Capital Requirements for Non-life Underwriting Risk Using Generalized Linear Models," Prague Economic Papers, Prague University of Economics and Business, vol. 2017(4), pages 450-466.
    2. Jiří Valecký, . "Calculation of Solvency Capital Requirements for Non-life Underwriting Risk Using Generalized Linear Models," Prague Economic Papers, University of Economics, Prague, vol. 0, pages 1-17.
    3. Shengkun Xie & Rebecca Luo, 2022. "Measuring Variable Importance in Generalized Linear Models for Modeling Size of Loss Distributions," Mathematics, MDPI, vol. 10(10), pages 1-19, May.
    4. Chenglong Ye & Lin Zhang & Mingxuan Han & Yanjia Yu & Bingxin Zhao & Yuhong Yang, 2022. "Combining Predictions of Auto Insurance Claims," Econometrics, MDPI, vol. 10(2), pages 1-15, April.
    5. Yip, Karen C.H. & Yau, Kelvin K.W., 2005. "On modeling claim frequency data in general insurance with extra zeros," Insurance: Mathematics and Economics, Elsevier, vol. 36(2), pages 153-163, April.
    6. Hünermund, Paul & Czarnitzki, Dirk, 2019. "Estimating the causal effect of R&D subsidies in a pan-European program," Research Policy, Elsevier, vol. 48(1), pages 115-124.
    7. Malloy, Elizabeth J. & Spiegelman, Donna & Eisen, Ellen A., 2009. "Comparing measures of model selection for penalized splines in Cox models," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2605-2616, May.
    8. Proto, Eugenio & Rustichini, Aldo, 2015. "Life satisfaction, income and personality," Journal of Economic Psychology, Elsevier, vol. 48(C), pages 17-32.
    9. Marcelo Cajias & Philipp Freudenreich & Anna Heller & Wolfgang Schaefers, 2018. "Censored Quantile Regressions and the Determinants of Real Estate Liquidity," ERES eres2018_203, European Real Estate Society (ERES).
    10. Qimeng Pan & Lysa Porth & Hong Li, 2022. "Assessing the Effectiveness of the Actuaries Climate Index for Estimating the Impact of Extreme Weather on Crop Yield and Insurance Applications," Sustainability, MDPI, vol. 14(11), pages 1-24, June.
    11. Pregaldini, Damiano & Backes-Gellner, Uschi & Eisenkopf, Gerald, 2020. "Girls’ preferences for STEM and the effects of classroom gender composition: New evidence from a natural experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 178(C), pages 102-123.
    12. Paul Hünermund & Dirk Czarnitzki, 2016. "Estimating the local average treatment effect of R&D subsidies in a pan-European program," Working Papers of Department of Management, Strategy and Innovation, Leuven 541177, KU Leuven, Faculty of Economics and Business (FEB), Department of Management, Strategy and Innovation, Leuven.
    13. Pinho, Luis Gustavo B. & Nobre, Juvêncio S. & Singer, Julio M., 2015. "Cook’s distance for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 126-136.
    14. Carslake, David & Fraser, Abigail & Davey Smith, George & May, Margaret & Palmer, Tom & Sterne, Jonathan & Silventoinen, Karri & Tynelius, Per & Lawlor, Debbie A. & Rasmussen, Finn, 2013. "Associations of mortality with own height using son's height as an instrumental variable," Economics & Human Biology, Elsevier, vol. 11(3), pages 351-359.
    15. Prokop, Viktor & Gerstlberger, Wolfgang & Zapletal, David & Gyamfi, Solomon, 2023. "Do we need human capital heterogeneity for energy efficiency and innovativeness? Insights from European catching-up territories," Energy Policy, Elsevier, vol. 177(C).
    16. Adriana Dima & Elena Radu & Ecaterina Milica Dobrota & Adrian Otoiu & Alina Florentina Saracu, 2023. "Sustainable Development of E-commerce in the Post-COVID Times: A Mixed-Methods Analysis of Pestle Factors," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(S17), pages 1095-1095, November.
    17. Daniela Balutel & Christopher S. Henry & Kim P. Huynh & Marcel C. Voia, 2024. "Cash in the Pocket, Cash in the Cloud: Cash Holdings of Bitcoin Owners," International Journal of Central Banking, International Journal of Central Banking, vol. 20(3), pages 115-159, July.
    18. Sauerbrei, W. & Meier-Hirmer, C. & Benner, A. & Royston, P., 2006. "Multivariable regression model building by using fractional polynomials: Description of SAS, STATA and R programs," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3464-3485, August.
    19. Šoltés Erik & Zelinová Silvia & Bilíková Mária, 2019. "General Linear Model: An Effective Tool For Analysis Of Claim Severity In Motor Third Party Liability Insurance," Statistics in Transition New Series, Polish Statistical Association, vol. 20(4), pages 13-31, December.
    20. Yuqing Zhang & Neil Walton, 2019. "Adaptive Pricing in Insurance: Generalized Linear Models and Gaussian Process Regression Approaches," Papers 1907.05381, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mup:actaun:actaun_2016064020683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://mendelu.cz/en/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.