IDEAS home Printed from https://ideas.repec.org/a/mth/jas888/v10y2022i4p65-87.html
   My bibliography  Save this article

Evaluation the Efficiency of Subsurface Flow Constructed Wetland (SSF) for Wastewater Treatment and Reuse in Semi-arid Environment

Author

Listed:
  • Luna Al Hadidi
  • Amer Sweity

Abstract

The efficiency of subsurface flow (SSF) constructed wetlands was evaluated on the treatment of secondary treated wastewater to improve the quality of the effluent for reuse purposes. A horizontal SSF system was constructed to evaluate the efficiency to enhance the quality of secondary treated wastewater effluent from Ramtha wastewater treatment plant WWTP and its potential uses for crop production at Hydrulic retention time HRT of 1 day. The SSF was planted with barley crop (Hordium vulgare), retrieved from the Arab Center for the Studies of Arid Zones and Dry-land (ACSAD) variety followed by corn crop (Zea mays L.), using BONANZA, F1 variety in the other season. Weekly physicochemical and microbiological analyses were carried out on the outlet from the wetlands in addition to the TWW treated wastewater effluent (inlet) in order to assess the removal efficiency of each stage of the treatment process and the total treatment system and it was used for irrigation of a fodder crop field. The SSF wetland subsequently influenced the physicochemical parameters. The SSF reduced the concentration of COD, NO-3, and TKN by 48%, 18%, and 20% respectively. Water use efficiency (WUE) for corn and barley were improved tremendously compared to the traditional irrigation techniques used in the field. The results showed a great possibility of using the SSF wetlands for the growth and production of fodder crops.

Suggested Citation

  • Luna Al Hadidi & Amer Sweity, 2022. "Evaluation the Efficiency of Subsurface Flow Constructed Wetland (SSF) for Wastewater Treatment and Reuse in Semi-arid Environment," Journal of Agricultural Studies, Macrothink Institute, vol. 10(4), pages 65-87, December.
  • Handle: RePEc:mth:jas888:v:10:y:2022:i:4:p:65-87
    as

    Download full text from publisher

    File URL: https://www.macrothink.org/journal/index.php/jas/article/download/20314/15712
    Download Restriction: no

    File URL: https://www.macrothink.org/journal/index.php/jas/article/view/20314
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Díaz, Francisco J. & O'Geen, Anthony T. & Dahlgren, Randy A., 2010. "Efficacy of constructed wetlands for removal of bacterial contamination from agricultural return flows," Agricultural Water Management, Elsevier, vol. 97(11), pages 1813-1821, November.
    2. Carr, Gemma & Potter, Robert B. & Nortcliff, Stephen, 2011. "Water reuse for irrigation in Jordan: Perceptions of water quality among farmers," Agricultural Water Management, Elsevier, vol. 98(5), pages 847-854, March.
    3. Md Ekhlasur Rahman & Mohd Izuan Effendi Bin Halmi & Mohd Yusoff Bin Abd Samad & Md Kamal Uddin & Khairil Mahmud & Mohd Yunus Abd Shukor & Siti Rozaimah Sheikh Abdullah & S M Shamsuzzaman, 2020. "Design, Operation and Optimization of Constructed Wetland for Removal of Pollutant," IJERPH, MDPI, vol. 17(22), pages 1-40, November.
    4. Jeet Chand & Guna Hewa & Ali Hassanli & Baden Myers, 2020. "Evaluation of Deficit Irrigation and Water Quality on Production and Water Productivity of Tomato in Greenhouse," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitra Lazaridou & Anastasios Michailidis & Konstantinos Mattas, 2019. "Evaluating the Willingness to Pay for Using Recycled Water for Irrigation," Sustainability, MDPI, vol. 11(19), pages 1-8, September.
    2. Sandra Ricart & Anna Ribas & David Pavón, 2016. "Qualifying irrigation system sustainability by means of stakeholder perceptions and concerns: lessons from the Segarra‐Garrigues Canal, Spain," Natural Resources Forum, Blackwell Publishing, vol. 40(1-2), pages 77-90, February.
    3. Lorena Peñacoba-Antona & Montserrat Gómez-Delgado & Abraham Esteve-Núñez, 2021. "Multi-Criteria Evaluation and Sensitivity Analysis for the Optimal Location of Constructed Wetlands (METland) at Oceanic and Mediterranean Areas," IJERPH, MDPI, vol. 18(10), pages 1-22, May.
    4. Winfrida Mayilla & Bernard Keraita & Helena Ngowi & Flemming Konradsen & Flavianus Magayane, 2017. "Perceptions of using low-quality irrigation water in vegetable production in Morogoro, Tanzania," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(1), pages 165-183, February.
    5. Erez Braude & Shmuel Hauser & Zilla Sinuany-Stern & Gideon Oron, 2015. "Water Allocation Between the Agricultural and the Municipal Sectors Under Scarcity: A Financial Approach Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3481-3501, August.
    6. Desta Woldetsadik & Pay Drechsel & Bernard Keraita & Fisseha Itanna & Heluf Gebrekidan, 2018. "Farmers’ perceptions on irrigation water contamination, health risks and risk management measures in prominent wastewater-irrigated vegetable farming sites of Addis Ababa, Ethiopia," Environment Systems and Decisions, Springer, vol. 38(1), pages 52-64, March.
    7. Yuan, Shiwei & Li, Xin & Du, Erhu, 2021. "Effects of farmers’ behavioral characteristics on crop choices and responses to water management policies," Agricultural Water Management, Elsevier, vol. 247(C).
    8. Wu, You & Si, Wei & Yan, Shicheng & Wu, Lifeng & Zhao, Wenju & Zhang, Jiale & Zhang, Fucang & Fan, Junliang, 2023. "Water consumption, soil nitrate-nitrogen residue and fruit yield of drip-irrigated greenhouse tomato under various irrigation levels and fertilization practices," Agricultural Water Management, Elsevier, vol. 277(C).
    9. Ben Brahim-Neji, Hella & Ruiz-Villaverde, Alberto & González-Gómez, Francisco, 2014. "Decision aid supports for evaluating agricultural water reuse practices in Tunisia: The Cebala perimeter," Agricultural Water Management, Elsevier, vol. 143(C), pages 113-121.
    10. Namakando, Namakando, 2020. "Stakeholder perceptions of raw water quality and its management in Fetakgomo and Maruleng municipalities of Limpopo Province," Research Theses 334769, Collaborative Masters Program in Agricultural and Applied Economics.
    11. Deh-Haghi, Zoherh & Bagheri, Asghar & Fotourehchi, Zahra & Damalas, Christos A., 2020. "Farmers’ acceptance and willingness to pay for using treated wastewater in crop irrigation: A survey in western Iran," Agricultural Water Management, Elsevier, vol. 239(C).
    12. Laura Mirra & Simone Russo & Massimiliano Borrello, 2024. "Exploring Factors Shaping Farmer Behavior in Wastewater Utilization for Agricultural Practices: A Rapid Review," Sustainability, MDPI, vol. 16(7), pages 1-19, March.
    13. Ricart, Sandra & Gandolfi, Claudio, 2017. "Balancing irrigation multifunctionality based on key stakeholders’ attitudes: Lessons learned from the Muzza system, Italy," Land Use Policy, Elsevier, vol. 69(C), pages 461-473.
    14. Díaz, Francisco J. & O′Geen, Anthony T. & Dahlgren, Randy A., 2012. "Agricultural pollutant removal by constructed wetlands: Implications for water management and design," Agricultural Water Management, Elsevier, vol. 104(C), pages 171-183.
    15. Shao, Dongguo & Tan, Xuezhi & Liu, Huanhuan & Yang, Haidong & Xiao, Chun & Yang, Fengshun, 2013. "Performance analysis of on-farm irrigation tanks on agricultural drainage water reuse and treatment," Resources, Conservation & Recycling, Elsevier, vol. 75(C), pages 1-13.
    16. Marwa M. Waly & Slobodan B. Mickovski & Craig Thomson, 2023. "Application of Circular Economy in Oil and Gas Produced Water Treatment," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    17. Ricart, Sandra & Rico, Antonio M., 2019. "Assessing technical and social driving factors of water reuse in agriculture: A review on risks, regulation and the yuck factor," Agricultural Water Management, Elsevier, vol. 217(C), pages 426-439.
    18. Faridullah & Tahir Asma & Khan Junaid & Hua-Zhou Yao & Yasin Rahim & Amna Sarwar & Ismail Shah & Raja Zakir-Zahid, 2022. "Assessment Of Potentially Toxic Metals And Nutrients From Contaminated Soil, Edible Plants, And Lake Sediments: A Case Study Of Hattar Industrial Estate Haripur, Pakistan," Environment & Ecosystem Science (EES), Zibeline International Publishing, vol. 6(2), pages 94-100, November.
    19. Saliba, R. & Callieris, R. & D’Agostino, D. & Roma, R. & Scardigno, A., 2018. "Stakeholders’ attitude towards the reuse of treated wastewater for irrigation in Mediterranean agriculture," Agricultural Water Management, Elsevier, vol. 204(C), pages 60-68.
    20. Mihai Cărbunar & Olimpia Mintaș & Nicu Cornel Sabău & Ioana Borza & Alina Stanciu & Ana Pereș & Adelina Venig & Mircea Curilă & Mihaela Lavinia Cărbunar & Teodora Vidican & Cristian Oneț, 2022. "Effectiveness of Measures to Reduce the Influence of Global Climate Change on Tomato Cultivation in Solariums—Case Study: Crișurilor Plain, Bihor, Romania," Agriculture, MDPI, vol. 12(5), pages 1-26, April.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mth:jas888:v:10:y:2022:i:4:p:65-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Technical Support Office (email available below). General contact details of provider: http://www.macrothink.org/journal/index.php/jas .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.