IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v104y2012icp171-183.html
   My bibliography  Save this article

Agricultural pollutant removal by constructed wetlands: Implications for water management and design

Author

Listed:
  • Díaz, Francisco J.
  • O′Geen, Anthony T.
  • Dahlgren, Randy A.

Abstract

Several agricultural non-point source pollutants impair water quality in the Sacramento–San Joaquin River system of California's Central Valley. Constructed wetlands are a water management option available to growers in this region to economically reduce pollutants in agricultural runoff. This study assessed the efficacy of using constructed wetlands to improve water quality of irrigation return flows prior to discharge into surface waters. Seven constructed surface flow-through wetlands having contrasting design and water management were evaluated for their effects on the fate of chemical (salts, nutrients, and dissolved organic carbon), physical (suspended solids), and biological contaminants (algal pigments and bacteria indicator). Based on wetland input–output measurements, load removal efficiencies (LRE) were used to determine wetland performance. All wetlands efficiently removed nitrate and total suspended solids showing LRE ranging from 22 to 99% and from 31 to 96%, respectively. However, for the rest of studied parameters, removal dynamics were mixed, varying from source (negative LRE) to sink (positive LRE). In general continuous flow-through wetlands were more effective in removing most pollutants in comparison to flood-pulse wetlands. Among continuous flow-through wetlands those with lower vegetation cover (<5%) acted as algae incubators contributing to biological oxygen demand, while those with long hydrologic residence time (>10 days) promoted increased concentrations of dissolved organic carbon. Water evapotranspiration and seepage processes, vegetation characteristics and hydrologic residence time were key factors affecting concentration and load reductions. This study demonstrates the potential benefits and limitations of constructed wetlands for treating water from agricultural non-point sources, providing useful information for optimizing constructed wetland design and management.

Suggested Citation

  • Díaz, Francisco J. & O′Geen, Anthony T. & Dahlgren, Randy A., 2012. "Agricultural pollutant removal by constructed wetlands: Implications for water management and design," Agricultural Water Management, Elsevier, vol. 104(C), pages 171-183.
  • Handle: RePEc:eee:agiwat:v:104:y:2012:i:c:p:171-183
    DOI: 10.1016/j.agwat.2011.12.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377411003362
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2011.12.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brauer, N. & O'Geen, A.T. & Dahlgren, R.A., 2009. "Temporal variability in water quality of agricultural tailwaters: Implications for water quality monitoring," Agricultural Water Management, Elsevier, vol. 96(6), pages 1001-1009, June.
    2. Díaz, Francisco J. & O'Geen, Anthony T. & Dahlgren, Randy A., 2010. "Efficacy of constructed wetlands for removal of bacterial contamination from agricultural return flows," Agricultural Water Management, Elsevier, vol. 97(11), pages 1813-1821, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro Garcia-Caparros & Juana Isabel Contreras & Rafael Baeza & Maria Luz Segura & Maria Teresa Lao, 2017. "Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    2. Yang Yi & Mingchang Shi & Chunjiang Liu & Bin Wang & Hongzhang Kang & Xinli Hu, 2018. "Changes of Ecosystem Services and Landscape Patterns in Mountainous Areas: A Case Study in the Mentougou District in Beijing," Sustainability, MDPI, vol. 10(10), pages 1-17, October.
    3. Jasmina JOSIMOV-DUNDJERSKI & Radovan SAVIĆ & Andjelka BELIĆ & Atila SALVAI & Jasna GRABIĆ, 2015. "Sustainability of the constructed wetland based on the characteristics in effluent," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 10(2), pages 114-120.
    4. Zhang, Y.M. & Lu, H.W. & Nie, X.H. & He, L. & Du, P., 2014. "An interactive inexact fuzzy bounded programming approach for agricultural water quality management," Agricultural Water Management, Elsevier, vol. 133(C), pages 104-111.
    5. Liu, M. & Huang, G.H. & Liao, R.F. & Li, Y.P. & Xie, Y.L., 2013. "Fuzzy two-stage non-point source pollution management model for agricultural systems—A case study for the Lake Tai Basin, China," Agricultural Water Management, Elsevier, vol. 121(C), pages 27-41.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shao, Dongguo & Tan, Xuezhi & Liu, Huanhuan & Yang, Haidong & Xiao, Chun & Yang, Fengshun, 2013. "Performance analysis of on-farm irrigation tanks on agricultural drainage water reuse and treatment," Resources, Conservation & Recycling, Elsevier, vol. 75(C), pages 1-13.
    2. Luna Al Hadidi & Amer Sweity, 2022. "Evaluation the Efficiency of Subsurface Flow Constructed Wetland (SSF) for Wastewater Treatment and Reuse in Semi-arid Environment," Journal of Agricultural Studies, Macrothink Institute, vol. 10(4), pages 65-87, December.
    3. Díaz, Francisco J. & O'Geen, Anthony T. & Dahlgren, Randy A., 2010. "Efficacy of constructed wetlands for removal of bacterial contamination from agricultural return flows," Agricultural Water Management, Elsevier, vol. 97(11), pages 1813-1821, November.
    4. Gruyer, Nicolas & Dorais, Martine & Zagury, Gérald J. & Alsanius, Beatrix W., 2013. "Removal of plant pathogens from recycled greenhouse wastewater using constructed wetlands," Agricultural Water Management, Elsevier, vol. 117(C), pages 153-158.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:104:y:2012:i:c:p:171-183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.