IDEAS home Printed from https://ideas.repec.org/a/mbr/jmonec/v15y2020i2p123-134.html
   My bibliography  Save this article

Optimal Portfolio Allocation with Price Limit Constraint

Author

Listed:
  • Keshavarz Haddad, Gholamreza

    (Graduate School of Management and Economics, Sharif University of Technology)

  • Heidari, Hadi

    (Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran)

Abstract

Daily price limits are adopted by many securities exchanges in countries such as the USA, Canada, Japan and various other countries in Europe and Asia, in order to increase the stability of the financial market. These limits confine the price of the financial asset during all trading stages of any trading day to a range, usually determined based on the previous day’s closing price. In this paper we study the portfolio optimization problem with impose the price limit constraint. The dynamic programming technique is applied to derive the Hamilton–Jacobi–Bellman equation and the method of Lagrange multiplier is used to tackle the constraint. Optimization problem solution results, using numerical method show that the equilibrium path of wealth and investment in risky assets has a different way than in the absence of price limits.

Suggested Citation

  • Keshavarz Haddad, Gholamreza & Heidari, Hadi, 2020. "Optimal Portfolio Allocation with Price Limit Constraint," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 15(2), pages 123-134, April.
  • Handle: RePEc:mbr:jmonec:v:15:y:2020:i:2:p:123-134
    as

    Download full text from publisher

    File URL: http://jme.mbri.ac.ir/article-1-493-en.pdf
    Download Restriction: no

    File URL: http://jme.mbri.ac.ir/article-1-493-en.html
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    2. Grossman, Sanford J. & Vila, Jean-Luc, 1992. "Optimal Dynamic Trading with Leverage Constraints," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 27(2), pages 151-168, June.
    3. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    4. Philip H. Dybvig & Heber K. Farnsworth & Jennifer N. Carpenter, 2010. "Portfolio Performance and Agency," The Review of Financial Studies, Society for Financial Studies, vol. 23(1), pages 1-23, January.
    5. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    6. Jean-Pierre Fouque & Ronnie Sircar & Thaleia Zariphopoulou, 2017. "Portfolio Optimization And Stochastic Volatility Asymptotics," Mathematical Finance, Wiley Blackwell, vol. 27(3), pages 704-745, July.
    7. Campbell, Rachel & Huisman, Ronald & Koedijk, Kees, 2001. "Optimal portfolio selection in a Value-at-Risk framework," Journal of Banking & Finance, Elsevier, vol. 25(9), pages 1789-1804, September.
    8. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    2. Li, Zhongfei & Yao, Jing & Li, Duan, 2010. "Behavior patterns of investment strategies under Roy's safety-first principle," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(2), pages 167-179, May.
    3. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    4. Guiso, Luigi & Sodini, Paolo, 2013. "Household Finance: An Emerging Field," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1397-1532, Elsevier.
    5. Donatien Hainaut, 2009. "Dynamic asset allocation under VaR constraint with stochastic interest rates," Annals of Operations Research, Springer, vol. 172(1), pages 97-117, November.
    6. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    7. Thai Nguyen & Mitja Stadje, 2018. "Optimal investment for participating insurance contracts under VaR-Regulation," Papers 1805.09068, arXiv.org, revised Jul 2019.
    8. John Armstrong & Damiano Brigo & Alex S. L. Tse, 2024. "The importance of dynamic risk constraints for limited liability operators," Annals of Operations Research, Springer, vol. 336(1), pages 861-898, May.
    9. Chen, An & Vellekoop, Michel, 2017. "Optimal investment and consumption when allowing terminal debt," European Journal of Operational Research, Elsevier, vol. 258(1), pages 385-397.
    10. Nicole Bauerle & An Chen, 2022. "Optimal investment under partial information and robust VaR-type constraint," Papers 2212.04394, arXiv.org, revised Sep 2023.
    11. Leonid Kogan & Raman Uppal, "undated". "Risk Aversion and Optimal Portfolio Policies in Partial and General Equilibrium Economies," Rodney L. White Center for Financial Research Working Papers 13-00, Wharton School Rodney L. White Center for Financial Research.
    12. van Bilsen, Servaas & Laeven, Roger J.A., 2020. "Dynamic consumption and portfolio choice under prospect theory," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 224-237.
    13. Chen, Shun & Ge, Lei, 2021. "A learning-based strategy for portfolio selection," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 936-942.
    14. Xu Guo & Raymond H. Chan & Wing-Keung Wong & Lixing Zhu, 2019. "Mean–variance, mean–VaR, and mean–CVaR models for portfolio selection with background risk," Risk Management, Palgrave Macmillan, vol. 21(2), pages 73-98, June.
    15. Leippold, Markus & Trojani, Fabio & Vanini, Paolo, 2004. "A geometric approach to multiperiod mean variance optimization of assets and liabilities," Journal of Economic Dynamics and Control, Elsevier, vol. 28(6), pages 1079-1113, March.
    16. Grauer, Robert R., 2013. "Limiting losses may be injurious to your wealth," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5088-5100.
    17. Chen, An & Hieber, Peter & Nguyen, Thai, 2019. "Constrained non-concave utility maximization: An application to life insurance contracts with guarantees," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1119-1135.
    18. Kraft, Holger & Steffensen, Mogens, 2013. "A dynamic programming approach to constrained portfolios," European Journal of Operational Research, Elsevier, vol. 229(2), pages 453-461.
    19. Sheng, Jiliang & Wang, Xiaoting & Yang, Jun, 2012. "Incentive contracts in delegated portfolio management under VaR constraint," Economic Modelling, Elsevier, vol. 29(5), pages 1679-1685.
    20. Jean-Pierre Fouque & Ruimeng Hu & Ronnie Sircar, 2021. "Sub- and Super-solution Approach to Accuracy Analysis of Portfolio Optimization Asymptotics in Multiscale Stochastic Factor Market," Papers 2106.11510, arXiv.org, revised Oct 2021.

    More about this item

    Keywords

    Optimal Portfolio; Limited Prices; Dynamic Programming;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mbr:jmonec:v:15:y:2020:i:2:p:123-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: M. E. (email available below). General contact details of provider: https://edirc.repec.org/data/mbcbiir.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.