IDEAS home Printed from https://ideas.repec.org/a/ksa/szemle/937.html
   My bibliography  Save this article

Szimulációk és érzékenységvizsgálatok a magyar gazdaság egy középméretű makromodelljével
[Simulations and sensitivity analyses with a medium-sized macro model of the Hungarian economy]

Author

Listed:
  • Vincze, János
  • Bíró, Anikó
  • Elek, Péter

Abstract

A tanulmányban a Pénzügyminisztérium gazdaságpolitikai főosztálya és az MTA Közgazdaságtudományi Intézete által kifejlesztett középméretű negyedéves makrogazdasági modell segítségével elemezzük a magyar gazdaság legfontosabb mechanizmusait. A modellezés során követett alapelvek és a modell blokkjainak bemutatása után egy forgatókönyv-elemzés keretében vizsgáljuk a makrogazdasági és költségvetési folyamatokat befolyásoló főbb faktorok hatásait. A - tágan értelmezett - "bizonytalansági tényezőket" három csoportba soroljuk: megkülönböztetjük a külső környezet (például árfolyam) változását, a gazdasági szereplők viselkedésében rejlő bizonytalanságokat (például a bérigazodás sebességének vagy a fogyasztássimítás mértékének bizonytalanságát), valamint a gazdaságpolitikai lépéseket (például állami bérek emelését). Megmutatjuk, hogy e kockázatok makrokövetkezményei nem függetlenek egymástól, például egy árfolyamváltozás hatását befolyásolja a bérigazodás sebessége. Journal of Economic Literature (JEL) kód: C51, C53, E27, E60.

Suggested Citation

  • Vincze, János & Bíró, Anikó & Elek, Péter, 2007. "Szimulációk és érzékenységvizsgálatok a magyar gazdaság egy középméretű makromodelljével [Simulations and sensitivity analyses with a medium-sized macro model of the Hungarian economy]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(9), pages 774-799.
  • Handle: RePEc:ksa:szemle:937
    as

    Download full text from publisher

    File URL: http://www.kszemle.hu/tartalom/letoltes.php?id=937
    Download Restriction: Registration and subscription. 3-month embargo period to non-subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fildes, Robert & Stekler, Herman, 2002. "The state of macroeconomic forecasting," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 435-468, December.
    2. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    3. Werner Roeger & Jan in 't Veld, 1997. "QUEST II. A Multi-Country Business Cycle and Growth Model," European Economy - Economic Papers 2008 - 2015 123, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    4. Basu, Susanto & Fernald, John G. & Shapiro, Matthew D., 2001. "Productivity growth in the 1990s: technology, utilization, or adjustment?," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 55(1), pages 117-165, December.
    5. Szilárd Benk & Zoltán M. Jakab & Mihály András Kovács & Balázs Párkányi & Zoltán Reppa & Gábor Vadas, 2006. "The Hungarian Quarterly Projection Model (NEM)," MNB Occasional Papers 2006/60, Magyar Nemzeti Bank (Central Bank of Hungary).
    6. John H. Cochrane, 1999. "New facts in finance," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 23(Q III), pages 36-58.
    7. King, Robert G. & Rebelo, Sergio T., 1999. "Resuscitating real business cycles," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 14, pages 927-1007, Elsevier.
    8. Aaron Drew & Benjamin Hunt, 2000. "A comparison of the properties of NZM and FPS," Reserve Bank of New Zealand Discussion Paper Series DP2000/02, Reserve Bank of New Zealand.
    9. Fildes, Robert & Stekler, Herman, 2002. "Reply to the comments on 'The state of macroeconomic forecasting'," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 503-505, December.
    10. Rasmus Kattai, 2007. "Constants do not stay constant because variables are varying," Bank of Estonia Working Papers 2007-01, Bank of Estonia, revised 02 Jan 2007.
    11. Rajeev H. Dehejia & Sadek Wahba, 2002. "Propensity Score-Matching Methods For Nonexperimental Causal Studies," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 151-161, February.
    12. Christopher D. Carroll, 1997. "Buffer-Stock Saving and the Life Cycle/Permanent Income Hypothesis," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 112(1), pages 1-55.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tara M. Sinclair & Fred Joutz & Herman O. Stekler, 2008. "Are 'unbiased' forecasts really unbiased? Another look at the Fed forecasts," Working Papers 2008-010, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    2. Heilemann, Ullrich & Stekler, Herman, 2007. "Introduction to "The future of macroeconomic forecasting"," International Journal of Forecasting, Elsevier, vol. 23(2), pages 159-165.
    3. Döpke, Jörg & Fritsche, Ulrich & Müller, Karsten, 2019. "Has macroeconomic forecasting changed after the Great Recession? Panel-based evidence on forecast accuracy and forecaster behavior from Germany," Journal of Macroeconomics, Elsevier, vol. 62(C).
    4. Döpke Jörg & Fritsche Ulrich & Waldhof Gabi, 2019. "Theories, Techniques and the Formation of German Business Cycle Forecasts : Evidence from a survey of professional forecasters," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 239(2), pages 203-241, April.
    5. Klinger, Sabine & Heilemann, Ullrich, 2005. "Zu wenig Wettbewerb? Zu Stand und Entwicklung der Genauigkeit makroökonomischer Prognosen," Technical Reports 2005,16, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    6. Dovern, Jonas & Jannsen, Nils, 2017. "Systematic errors in growth expectations over the business cycle," International Journal of Forecasting, Elsevier, vol. 33(4), pages 760-769.
    7. Clemens, Christiane & Heinemann, Maik, 2019. "The Effects Of International Financial Integration In A Model With Heterogeneous Firms And Credit Frictions," Macroeconomic Dynamics, Cambridge University Press, vol. 23(7), pages 2815-2844, October.
    8. Krkoska, Libor & Teksoz, Utku, 2009. "How reliable are forecasts of GDP growth and inflation for countries with limited coverage?," Economic Systems, Elsevier, vol. 33(4), pages 376-388, December.
    9. Constantinou Anthony Costa & Fenton Norman Elliott, 2012. "Solving the Problem of Inadequate Scoring Rules for Assessing Probabilistic Football Forecast Models," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(1), pages 1-14, March.
    10. Singleton, Carl & Reade, J. James & Brown, Alasdair, 2020. "Going with your gut: The (In)accuracy of forecast revisions in a football score prediction game," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 89(C).
    11. Mathy, Gabriel & Stekler, Herman, 2017. "Expectations and forecasting during the Great Depression: Real-time evidence from the business press," Journal of Macroeconomics, Elsevier, vol. 53(C), pages 1-15.
    12. Christopher F. Baum & John Barkoulas, 2006. "Long-memory forecasting of US monetary indices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(4), pages 291-302.
    13. Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
    14. Paul Gallimore & Pat McAllister, 2005. "The Production and Consumption of Commercial Real Estate Market Forecasts," Real Estate & Planning Working Papers rep-wp2005-06, Henley Business School, University of Reading.
    15. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
    16. Ager, P. & Kappler, M. & Osterloh, S., 2009. "The accuracy and efficiency of the Consensus Forecasts: A further application and extension of the pooled approach," International Journal of Forecasting, Elsevier, vol. 25(1), pages 167-181.
    17. Ericsson, Neil R., 2016. "Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis," International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
    18. Ashiya, Masahiro, 2007. "Forecast accuracy of the Japanese government: Its year-ahead GDP forecast is too optimistic," Japan and the World Economy, Elsevier, vol. 19(1), pages 68-85, January.
    19. Constantin Burgi, 2016. "What Do We Lose When We Average Expectations?," Working Papers 2016-013, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    20. Chevillon, Guillaume & Hendry, David F., 2005. "Non-parametric direct multi-step estimation for forecasting economic processes," International Journal of Forecasting, Elsevier, vol. 21(2), pages 201-218.

    More about this item

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • E60 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ksa:szemle:937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Odon Sok (email available below). General contact details of provider: http://www.kszemle.hu .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.