IDEAS home Printed from https://ideas.repec.org/a/ksa/szemle/1782.html
   My bibliography  Save this article

A részvénytartás spektrális kockázata hosszú távon
[On the spectral measure of risk in holding stocks in the long run]

Author

Listed:
  • Csóka, Péter
  • Bihary, Zsolt
  • Kondor, Gábor

Abstract

A hosszú távon befektetők (például nyugdíjalapok, céldátum-eszközalapok és fiatal befektetők) számára fontos kérdés, hogy mennyire kockázatos hosszú távon részvényt tartani. Tanulmányunk a spektrális kockázati mértékeket helyezi középpontba, amelyek a vizsgált kitettségek lehetséges veszteségeit úgy átlagolják, hogy a nagyobb veszteségek nagyobb súlyt kapnak. A kitettséget a kockázatmentes bankbetét és a részvényárfolyam különbségének választva, a spektrális kockázatra tekinthetünk úgy, mint annak a mértékére, hogy a befektető átlagosan mennyire fogja azt bánni, hogy kockázatmentes bankbetét helyett részvényekbe fektetett. Tanulmányunkban illusztráljuk Bihary és szerzőtársai [2018] eredményeit, amelyek analitikusan megmutatták, hogy a részvénytartás spektrális kockázata kellően hosszú távon csökken, sőt negatív lesz. Ugyanakkor numerikusan azt tapasztaljuk, hogy az elviselhető kockázathoz legalább száz évet kell várnunk.* Journal of Economic Literature (JEL) kód: G11.

Suggested Citation

  • Csóka, Péter & Bihary, Zsolt & Kondor, Gábor, 2018. "A részvénytartás spektrális kockázata hosszú távon [On the spectral measure of risk in holding stocks in the long run]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 687-700.
  • Handle: RePEc:ksa:szemle:1782
    DOI: 10.18414/KSZ.2018.7-8.687
    as

    Download full text from publisher

    File URL: http://www.kszemle.hu/tartalom/letoltes.php?id=1782
    Download Restriction: Registration and subscription. 3-month embargo period to non-subscribers.

    File URL: https://libkey.io/10.18414/KSZ.2018.7-8.687?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andreas Fagereng & Charles Gottlieb & Luigi Guiso, 2017. "Asset Market Participation and Portfolio Choice over the Life-Cycle," Journal of Finance, American Finance Association, vol. 72(2), pages 705-750, April.
    2. Csoka, Peter & Herings, P. Jean-Jacques & Koczy, Laszlo A., 2007. "Coherent measures of risk from a general equilibrium perspective," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2517-2534, August.
    3. repec:bla:jfinan:v:58:y:2003:i:2:p:753-778 is not listed on IDEAS
    4. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    5. Hung Nguyen & Uyen Pham & Hien Tran, 2012. "On some claims related to Choquet integral risk measures," Annals of Operations Research, Springer, vol. 195(1), pages 5-31, May.
    6. Ľuboš Pástor & Robert F. Stambaugh, 2012. "Are Stocks Really Less Volatile in the Long Run?," Journal of Finance, American Finance Association, vol. 67(2), pages 431-478, April.
    7. Peter Carr & Liuren Wu, 2003. "The Finite Moment Log Stable Process and Option Pricing," Journal of Finance, American Finance Association, vol. 58(2), pages 753-777, April.
    8. Bodie, Zvi & Merton, Robert C. & Samuelson, William F., 1992. "Labor supply flexibility and portfolio choice in a life cycle model," Journal of Economic Dynamics and Control, Elsevier, vol. 16(3-4), pages 427-449.
    9. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    10. Andrew Ang & Dimitris Papanikolaou & Mark M. Westerfield, 2014. "Portfolio Choice with Illiquid Assets," Management Science, INFORMS, vol. 60(11), pages 2737-2761, November.
    11. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
    12. Carlo Acerbi & Giacomo Scandolo, 2008. "Liquidity risk theory and coherent measures of risk," Quantitative Finance, Taylor & Francis Journals, vol. 8(7), pages 681-692.
    13. Benoit Mandelbrot, 1963. "New Methods in Statistical Economics," Journal of Political Economy, University of Chicago Press, vol. 71(5), pages 421-421.
    14. Zsolt Bihary & Péter Csóka & Dávid Zoltán Szabó, 2020. "Spectral risk measure of holding stocks in the long run," Annals of Operations Research, Springer, vol. 295(1), pages 75-89, December.
    15. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zsolt Bihary & Péter Csóka & Dávid Zoltán Szabó, 2020. "Spectral risk measure of holding stocks in the long run," Annals of Operations Research, Springer, vol. 295(1), pages 75-89, December.
    2. Dávid Zoltán Szabó & Zsolt Bihary, 2023. "The riskiness of stock versus money market investment with stochastic rates," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 393-415, June.
    3. Alexis Bonnet & Isabelle Nagot, 2005. "Methodology of measuring performance in alternative investment," Cahiers de la Maison des Sciences Economiques b05078, Université Panthéon-Sorbonne (Paris 1).
    4. Alexis Bonnet & Isabelle Nagot, 2005. "Methodology of measuring performance in alternative investment," Post-Print halshs-00196443, HAL.
    5. Chuancun Yin & Dan Zhu, 2015. "New class of distortion risk measures and their tail asymptotics with emphasis on VaR," Papers 1503.08586, arXiv.org, revised Mar 2016.
    6. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2018. "Tail expectile process and risk assessment," TSE Working Papers 18-944, Toulouse School of Economics (TSE).
    7. Choo, Weihao & de Jong, Piet, 2016. "Insights to systematic risk and diversification across a joint probability distribution," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 142-150.
    8. Wächter, Hans Peter & Mazzoni, Thomas, 2013. "Consistent modeling of risk averse behavior with spectral risk measures," European Journal of Operational Research, Elsevier, vol. 229(2), pages 487-495.
    9. Leili Javanmardi & Yuri Lawryshyn, 2016. "A new rank dependent utility approach to model risk averse preferences in portfolio optimization," Annals of Operations Research, Springer, vol. 237(1), pages 161-176, February.
    10. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
    11. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    12. Iosif Pinelis, 2013. "An optimal three-way stable and monotonic spectrum of bounds on quantiles: a spectrum of coherent measures of financial risk and economic inequality," Papers 1310.6025, arXiv.org.
    13. De Giorgi, Enrico, 2005. "Reward-risk portfolio selection and stochastic dominance," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 895-926, April.
    14. Wei Wang & Huifu Xu, 2023. "Preference robust state-dependent distortion risk measure on act space and its application in optimal decision making," Computational Management Science, Springer, vol. 20(1), pages 1-51, December.
    15. Soren Bettels & Stefan Weber, 2024. "An Integrated Approach to Importance Sampling and Machine Learning for Efficient Monte Carlo Estimation of Distortion Risk Measures in Black Box Models," Papers 2408.02401, arXiv.org.
    16. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    17. Choo, Weihao & de Jong, Piet, 2009. "Loss reserving using loss aversion functions," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 271-277, October.
    18. Tasche, Dirk, 2002. "Expected shortfall and beyond," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1519-1533, July.
    19. Henryk Zähle, 2011. "Rates of almost sure convergence of plug-in estimates for distortion risk measures," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(2), pages 267-285, September.
    20. Bernardi Mauro & Roy Cerqueti & Arsen Palestini, 2016. "Allocation of risk capital in a cost cooperative game induced by a modified Expected Shortfall," Papers 1608.02365, arXiv.org.

    More about this item

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ksa:szemle:1782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Odon Sok (email available below). General contact details of provider: http://www.kszemle.hu .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.