IDEAS home Printed from https://ideas.repec.org/a/ksa/szemle/1616.html
   My bibliography  Save this article

Egy- és többváltozós szűrők a hitelrés alakulásának meghatározására
[Filters with single or multiple variables in measuring the size of the credit gap]

Author

Listed:
  • Hosszú, Zsuzsanna
  • Körmendi, Gyöngyi
  • Mérő, Bence

Abstract

Tanulmányunkban a magyar hitelpiac ciklikus pozíciójának néhány lehetséges mérési módját hasonlítjuk össze. Három trendszűrő-eljárással de kom po nál juk a magyar GDP-arányos hitelállomány idősorát trendre és ciklikus komponensre (hitelrésre): egyváltozós Hodrick-Prescott-szűrővel, egyváltozós Christiano-Fitzgerald-szűrővel és többváltozós Hodrick-Prescott-szűrővel. A de kom po zí ciót külön végezzük a háztartási és a vállalati szegmens esetében. A három módszer közül más változók információtartalmát is felhasználó többváltozós Hodrick-Prescott-szűrő eredményei tükrözik leginkább a magyarországi hitelezési folyamatokkal kapcsolatos szakértői képet: a 2008-as válság kitöréséig - elsősorban a háztartási devizahitelezésnek köszönhetően - a hitelrés folyamatosan nyílt. A válságot követő alkalmazkodás során a hitelrés zárult, sőt a nagymértékű csökkenés miatt negatív lett az értéke. Journal of Economic Literature (JEL) kód: C30, E32, G28.

Suggested Citation

  • Hosszú, Zsuzsanna & Körmendi, Gyöngyi & Mérő, Bence, 2016. "Egy- és többváltozós szűrők a hitelrés alakulásának meghatározására [Filters with single or multiple variables in measuring the size of the credit gap]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(3), pages 233-259.
  • Handle: RePEc:ksa:szemle:1616
    DOI: 10.18414/KSZ.2016.3.233
    as

    Download full text from publisher

    File URL: http://www.kszemle.hu/tartalom/letoltes.php?id=1616
    Download Restriction: Registration and subscription. 3-month embargo period to non-subscribers.

    File URL: https://libkey.io/10.18414/KSZ.2016.3.233?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mody, Ashoka & Sarno, Lucio & Taylor, Mark P., 2007. "A cross-country financial accelerator: Evidence from North America and Europe," Journal of International Money and Finance, Elsevier, vol. 26(1), pages 149-165, February.
    2. Rochelle M. Edge & Ralf R. Meisenzahl, 2011. "The Unreliability of Credit-to-GDP Ratio Gaps in Real Time: Implications for Countercyclical Capital Buffers," International Journal of Central Banking, International Journal of Central Banking, vol. 7(4), pages 261-298, December.
    3. Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "The Band Pass Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 435-465, May.
    4. Buncic, Daniel & Melecky, Martin, 2014. "Equilibrium credit: The reference point for macroprudential supervisors," Journal of Banking & Finance, Elsevier, vol. 41(C), pages 135-154.
    5. Gergely Kiss & Márton Nagy & Balázs Vonnák, 2006. "Credit Growth in Central and Eastern Europe: Convergence or Boom?," MNB Working Papers 2006/10, Magyar Nemzeti Bank (Central Bank of Hungary).
    6. Ryan A. Compton & Jose Ricardo da Costa & Silva, 2005. "Finance and the Business Cycle: a Kalman Filter Approach with Markov Switching," Working Papers Series 97, Central Bank of Brazil, Research Department.
    7. Mathias Drehmann & Claudio Borio & Leonardo Gambacorta & Gabriel Jiminez & Carlos Trucharte, 2010. "Countercyclical capital buffers: exploring options," BIS Working Papers 317, Bank for International Settlements.
    8. Detken, Carsten & Weeken, Olaf & Alessi, Lucia & Bonfim, Diana & Boucinha, Miguel & Castro, Christian & Frontczak, Sebastian & Giordana, Gaston & Giese, Julia & Wildmann, Nadya & Kakes, Jan & Klaus, B, 2014. "Operationalising the countercyclical capital buffer: indicator selection, threshold identification and calibration options," ESRB Occasional Paper Series 5, European Systemic Risk Board.
    9. Hirose, Yasuo & Kamada, Koichiro, 2003. "A New Technique for Simultaneous Estimation of Potential Output and the Phillips Curve," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 21(2), pages 93-112, August.
    10. Alessi, Lucia & Detken, Carsten, 2011. "Quasi real time early warning indicators for costly asset price boom/bust cycles: A role for global liquidity," European Journal of Political Economy, Elsevier, vol. 27(3), pages 520-533, September.
    11. Rochelle M. Edge & Ralf R. Meisenzahl, 2011. "The unreliability of credit-to-GDP ratio gaps in real-time: Implications for countercyclical capital buffers," Finance and Economics Discussion Series 2011-37, Board of Governors of the Federal Reserve System (U.S.).
    12. Carsten Detken & Olaf Weeken & Lucia Alessi & Diana Bonfim & Miguel M. Boucinha & Christian Castro & Sebastian Frontczak & Gaston Giordana & Julia Giese & Nadya Jahn & Jan Kakes & Benjamin Klaus & Jan, 2014. "Operationalising the countercyclical capital buffer: indicator selection, threshold identification and calibration options," ESRB Occasional Paper Series 05, European Systemic Risk Board.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schudel, Willem, 2015. "Shifting horizons: assessing macro trends before, during, and following systemic banking crises," Working Paper Series 1766, European Central Bank.
    2. Jorge E. Galán & Javier Mencía, 2021. "Model-based indicators for the identification of cyclical systemic risk," Empirical Economics, Springer, vol. 61(6), pages 3179-3211, December.
    3. Hartwig, Benny & Meinerding, Christoph & Schüler, Yves S., 2021. "Identifying indicators of systemic risk," Journal of International Economics, Elsevier, vol. 132(C).
    4. Antunes, António & Bonfim, Diana & Monteiro, Nuno & Rodrigues, Paulo M.M., 2018. "Forecasting banking crises with dynamic panel probit models," International Journal of Forecasting, Elsevier, vol. 34(2), pages 249-275.
    5. Audit, Dooneshsingh & Alam, Nafis, 2022. "Why have credit variables taken centre stage in predicting systemic banking crises?," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 3(1).
    6. Lang, Jan Hannes & Izzo, Cosimo & Fahr, Stephan & Ruzicka, Josef, 2019. "Anticipating the bust: a new cyclical systemic risk indicator to assess the likelihood and severity of financial crises," Occasional Paper Series 219, European Central Bank.
    7. Elena Deryugina & Alexey Ponomarenko, 2019. "Determination of the Current Phase of the Credit Cycle in Emerging Markets," Russian Journal of Money and Finance, Bank of Russia, vol. 78(2), pages 28-42, June.
    8. Borgy, Vladimir & Clerc, Laurent & Renne, Jean-Paul, 2014. "Measuring aggregate risk: Can we robustly identify asset-price boom–bust cycles?," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 132-150.
    9. O'Brien, Martin & Velasco, Sofia, 2020. "Unobserved components models with stochastic volatility for extracting trends and cycles in credit," Research Technical Papers 09/RT/20, Central Bank of Ireland.
    10. Hosszú, Zsuzsanna & Mérő, Bence, 2017. "Hitelciklusok és anticiklikus tőkepuffer egy ágensalapú keynesi modellben [Credit cycles and the counter-cyclical capital buffer in an agent-based Keynesian model]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(5), pages 457-475.
    11. Huynh, Tran & Uebelmesser, Silke, 2024. "Early warning models for systemic banking crises: Can political indicators improve prediction?," European Journal of Political Economy, Elsevier, vol. 81(C).
    12. Lang, Jan Hannes & Welz, Peter, 2018. "Semi-structural credit gap estimation," Working Paper Series 2194, European Central Bank.
    13. Schüler, Yves S. & Hiebert, Paul P. & Peltonen, Tuomas A., 2020. "Financial cycles: Characterisation and real-time measurement," Journal of International Money and Finance, Elsevier, vol. 100(C).
    14. Martínez, Juan Francisco & Oda, Daniel, 2021. "Characterization of the Chilean financial cycle, early warning indicators and implications for macro-prudential policies," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 2(1).
    15. Christian Castro & Ángel Estrada & Jorge Martínez, 2016. "The countercyclical capital buffer in spain: an analysis of key guiding indicators," Working Papers 1601, Banco de España.
    16. Mathias Drehmann & James Yetman, 2021. "Which Credit Gap Is Better at Predicting Financial Crises? A Comparison of Univariate Filters," International Journal of Central Banking, International Journal of Central Banking, vol. 17(70), pages 1-31, October.
    17. Tölö, Eero, 2020. "Predicting systemic financial crises with recurrent neural networks," Journal of Financial Stability, Elsevier, vol. 49(C).
    18. Alessi, Lucia & Detken, Carsten, 2018. "Identifying excessive credit growth and leverage," Journal of Financial Stability, Elsevier, vol. 35(C), pages 215-225.
    19. Dieckelmann, Daniel, 2020. "Cross-border lending and the international transmission of banking crises," Discussion Papers 2020/13, Free University Berlin, School of Business & Economics.
    20. Mathias Drehmann & Claudio Borio & Kostas Tsatsaronis, 2011. "Anchoring Countercyclical Capital Buffers: The role of Credit Aggregates," International Journal of Central Banking, International Journal of Central Banking, vol. 7(4), pages 189-240, December.

    More about this item

    JEL classification:

    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ksa:szemle:1616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Odon Sok (email available below). General contact details of provider: http://www.kszemle.hu .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.