IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v51y2024i5d10.1007_s11116-023-10381-5.html
   My bibliography  Save this article

Charging forward: deploying EV infrastructure for Uber and Lyft in California

Author

Listed:
  • Alan Jenn

    (University of California)

Abstract

With recent policies such as the Clean Miles Standard in California and Lyft’s announcement to reach 100% electric vehicles (EVs) by 2030, the electrification of vehicles on ride-hailing platforms is inevitable. The impacts of this transition are not well-studied. This work attempts to examine the infrastructure deployment necessary to meet demand from electric vehicles being driven on Uber and Lyft platforms using empirical trip data from the two services. We develop the Widespread Infrastructure for Ride-hail EV Deployment model to examine a set of case studies for charger installation in San Diego, Los Angeles, and the San Francisco Bay Area. We also conduct a set of sensitivity scenarios to measure the tradeoff between explicit costs of infrastructure versus weighting factors for valuing the time for drivers to travel to a charger (from where they are providing rides) and valuing the rate of charging (to minimize the amount of time that drivers have to wait to charge their vehicle). There are several notable findings from our study: (1) DC fast charging infrastructure is the dominant charger type necessary to meet ride-hailing demand, (2) shifting to overnight charging behavior that places less emphasis on daytime public charging can significantly reduce costs, and (3) the necessary ratio of chargers is approximately 10 times higher for EVs in Uber and Lyft compared to chargers for the general EV owning public.

Suggested Citation

  • Alan Jenn, 2024. "Charging forward: deploying EV infrastructure for Uber and Lyft in California," Transportation, Springer, vol. 51(5), pages 1663-1678, October.
  • Handle: RePEc:kap:transp:v:51:y:2024:i:5:d:10.1007_s11116-023-10381-5
    DOI: 10.1007/s11116-023-10381-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-023-10381-5
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-023-10381-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferro, G. & Minciardi, R. & Robba, M., 2020. "A user equilibrium model for electric vehicles: Joint traffic and energy demand assignment," Energy, Elsevier, vol. 198(C).
    2. Alan Jenn, 2020. "Emissions benefits of electric vehicles in Uber and Lyft ride-hailing services," Nature Energy, Nature, vol. 5(7), pages 520-525, July.
    3. Globisch, Joachim & Plötz, Patrick & Dütschke, Elisabeth & Wietschel, Martin, 2019. "Consumer preferences for public charging infrastructure for electric vehicles," Transport Policy, Elsevier, vol. 81(C), pages 54-63.
    4. Davidov, Sreten, 2020. "Optimal charging infrastructure planning based on a charging convenience buffer," Energy, Elsevier, vol. 192(C).
    5. Morro-Mello, Igoor & Padilha-Feltrin, Antonio & Melo, Joel D. & Calviño, Aida, 2019. "Fast charging stations placement methodology for electric taxis in urban zones," Energy, Elsevier, vol. 188(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bin He & Xin Yuan & Shusheng Qian & Bing Li, 2023. "Product low‐carbon design, manufacturing, logistics, and recycling: An overview," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(5), September.
    2. Matteo Böhm & Mirco Nanni & Luca Pappalardo, 2022. "Gross polluters and vehicle emissions reduction," Nature Sustainability, Nature, vol. 5(8), pages 699-707, August.
    3. Wang, Yuanyuan & Chi, Yuanying & Xu, Jin-Hua & Yuan, Yongke, 2022. "Consumers’ attitudes and their effects on electric vehicle sales and charging infrastructure construction: An empirical study in China," Energy Policy, Elsevier, vol. 165(C).
    4. Doll, Claus & Krauss, Konstantin, 2022. "Nachhaltige Mobilität und innovative Geschäftsmodelle," Studien zum deutschen Innovationssystem 10-2022, Expertenkommission Forschung und Innovation (EFI) - Commission of Experts for Research and Innovation, Berlin.
    5. Dingyi Lu & Yunqian Lu & Kexin Zhang & Chuyuan Zhang & Shao-Chao Ma, 2023. "An Application Designed for Guiding the Coordinated Charging of Electric Vehicles," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    6. Huang, Xingjun & Lin, Yun & Lim, Ming K. & Zhou, Fuli & Liu, Feng, 2022. "Electric vehicle charging station diffusion: An agent-based evolutionary game model in complex networks," Energy, Elsevier, vol. 257(C).
    7. Jakov Topić & Jure Soldo & Filip Maletić & Branimir Škugor & Joško Deur, 2020. "Virtual Simulation of Electric Bus Fleets for City Bus Transport Electrification Planning," Energies, MDPI, vol. 13(13), pages 1-24, July.
    8. Junchi Ma & Yuan Zhang & Zongtao Duan & Lei Tang, 2023. "PROLIFIC: Deep Reinforcement Learning for Efficient EV Fleet Scheduling and Charging," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    9. Zhang, Zhe & Yu, Qing & Gao, Kun & He, Hong-Di & Liu, Yang & Huang, Haichao, 2025. "Carbon emission reduction benefits of ride-hailing vehicle electrification considering energy structure," Applied Energy, Elsevier, vol. 377(PA).
    10. Khaleghikarahrodi, Mehrsa & Macht, Gretchen A., 2023. "Patterns, no patterns, that is the question: Quantifying users’ electric vehicle charging," Transport Policy, Elsevier, vol. 141(C), pages 291-304.
    11. Jain, Monika & Singh, Archana, 2024. "An empirical study on electric vehicle adoption in India: A step towards a greener environment," Transport Policy, Elsevier, vol. 156(C), pages 112-125.
    12. Wu, Xiaomei & Feng, Qijin & Bai, Chenchen & Lai, Chun Sing & Jia, Youwei & Lai, Loi Lei, 2021. "A novel fast-charging stations locational planning model for electric bus transit system," Energy, Elsevier, vol. 224(C).
    13. Fescioglu-Unver, Nilgun & Yıldız Aktaş, Melike, 2023. "Electric vehicle charging service operations: A review of machine learning applications for infrastructure planning, control, pricing and routing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    14. Alpizar, Francisco & Carlsson, Fredrik & Lanza, Gracia, 2024. "On the perils of environmentally friendly alternatives," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
    15. Liang, Jing & Qiu, Yueming (Lucy) & Xing, Bo, 2022. "Impacts of the co-adoption of electric vehicles and solar panel systems: Empirical evidence of changes in electricity demand and consumer behaviors from household smart meter data," Energy Economics, Elsevier, vol. 112(C).
    16. Wilfredo F. Yushimito & Sebastian Moreno & Daniela Miranda, 2023. "The Potential of Battery Electric Taxis in Santiago de Chile," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
    17. Long Chen & Xiaokun Liu & Peng Jing, 2023. "Do Unprecedented Gasoline Prices Affect the Consumer Switching to New Energy Vehicles? An Integrated Social Cognitive Theory Model," Sustainability, MDPI, vol. 15(10), pages 1-25, May.
    18. Mandys, F., 2021. "Electric vehicles and consumer choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    19. Antonia Golab & Sebastian Zwickl-Bernhard & Hans Auer, 2022. "Minimum-Cost Fast-Charging Infrastructure Planning for Electric Vehicles along the Austrian High-Level Road Network," Energies, MDPI, vol. 15(6), pages 1-26, March.
    20. Yang, Mengqi & Lin, Boqiang, 2024. "The development of consumer preferences for electric vehicle charging infrastructure in China: Evidence from a questionnaire survey with a four-year interval," Energy, Elsevier, vol. 307(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:51:y:2024:i:5:d:10.1007_s11116-023-10381-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.