IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v51y2024i5d10.1007_s11116-023-10381-5.html
   My bibliography  Save this article

Charging forward: deploying EV infrastructure for Uber and Lyft in California

Author

Listed:
  • Alan Jenn

    (University of California)

Abstract

With recent policies such as the Clean Miles Standard in California and Lyft’s announcement to reach 100% electric vehicles (EVs) by 2030, the electrification of vehicles on ride-hailing platforms is inevitable. The impacts of this transition are not well-studied. This work attempts to examine the infrastructure deployment necessary to meet demand from electric vehicles being driven on Uber and Lyft platforms using empirical trip data from the two services. We develop the Widespread Infrastructure for Ride-hail EV Deployment model to examine a set of case studies for charger installation in San Diego, Los Angeles, and the San Francisco Bay Area. We also conduct a set of sensitivity scenarios to measure the tradeoff between explicit costs of infrastructure versus weighting factors for valuing the time for drivers to travel to a charger (from where they are providing rides) and valuing the rate of charging (to minimize the amount of time that drivers have to wait to charge their vehicle). There are several notable findings from our study: (1) DC fast charging infrastructure is the dominant charger type necessary to meet ride-hailing demand, (2) shifting to overnight charging behavior that places less emphasis on daytime public charging can significantly reduce costs, and (3) the necessary ratio of chargers is approximately 10 times higher for EVs in Uber and Lyft compared to chargers for the general EV owning public.

Suggested Citation

  • Alan Jenn, 2024. "Charging forward: deploying EV infrastructure for Uber and Lyft in California," Transportation, Springer, vol. 51(5), pages 1663-1678, October.
  • Handle: RePEc:kap:transp:v:51:y:2024:i:5:d:10.1007_s11116-023-10381-5
    DOI: 10.1007/s11116-023-10381-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-023-10381-5
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-023-10381-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferro, G. & Minciardi, R. & Robba, M., 2020. "A user equilibrium model for electric vehicles: Joint traffic and energy demand assignment," Energy, Elsevier, vol. 198(C).
    2. Davidov, Sreten, 2020. "Optimal charging infrastructure planning based on a charging convenience buffer," Energy, Elsevier, vol. 192(C).
    3. Alan Jenn, 2020. "Emissions benefits of electric vehicles in Uber and Lyft ride-hailing services," Nature Energy, Nature, vol. 5(7), pages 520-525, July.
    4. Morro-Mello, Igoor & Padilha-Feltrin, Antonio & Melo, Joel D. & Calviño, Aida, 2019. "Fast charging stations placement methodology for electric taxis in urban zones," Energy, Elsevier, vol. 188(C).
    5. Globisch, Joachim & Plötz, Patrick & Dütschke, Elisabeth & Wietschel, Martin, 2019. "Consumer preferences for public charging infrastructure for electric vehicles," Transport Policy, Elsevier, vol. 81(C), pages 54-63.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Böhm & Mirco Nanni & Luca Pappalardo, 2022. "Gross polluters and vehicle emissions reduction," Nature Sustainability, Nature, vol. 5(8), pages 699-707, August.
    2. Wang, Yuanyuan & Chi, Yuanying & Xu, Jin-Hua & Yuan, Yongke, 2022. "Consumers’ attitudes and their effects on electric vehicle sales and charging infrastructure construction: An empirical study in China," Energy Policy, Elsevier, vol. 165(C).
    3. Morro-Mello, Igoor & Padilha-Feltrin, Antonio & Melo, Joel D. & Heymann, Fabian, 2021. "Spatial connection cost minimization of EV fast charging stations in electric distribution networks using local search and graph theory," Energy, Elsevier, vol. 235(C).
    4. Doll, Claus & Krauss, Konstantin, 2022. "Nachhaltige Mobilität und innovative Geschäftsmodelle," Studien zum deutschen Innovationssystem 10-2022, Expertenkommission Forschung und Innovation (EFI) - Commission of Experts for Research and Innovation, Berlin.
    5. Zhang, Tianren & Huang, Yuping & Liao, Hui & Liang, Yu, 2023. "A hybrid electric vehicle load classification and forecasting approach based on GBDT algorithm and temporal convolutional network," Applied Energy, Elsevier, vol. 351(C).
    6. Dingyi Lu & Yunqian Lu & Kexin Zhang & Chuyuan Zhang & Shao-Chao Ma, 2023. "An Application Designed for Guiding the Coordinated Charging of Electric Vehicles," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    7. Secinaro, Silvana & Calandra, Davide & Lanzalonga, Federico & Ferraris, Alberto, 2022. "Electric vehicles’ consumer behaviours: Mapping the field and providing a research agenda," Journal of Business Research, Elsevier, vol. 150(C), pages 399-416.
    8. Javier Turienzo & Pablo Cabanelas & Jesús F. Lampón, 2022. "The Mobility Industry Trends Through the Lens of the Social Analysis: A Multi-Level Perspective Approach," SAGE Open, , vol. 12(1), pages 21582440211, January.
    9. Arkadiusz Małek & Jacek Caban & Agnieszka Dudziak & Andrzej Marciniak & Piotr Ignaciuk, 2023. "A Method of Assessing the Selection of Carport Power for an Electric Vehicle Using the Metalog Probability Distribution Family," Energies, MDPI, vol. 16(13), pages 1-16, June.
    10. Peng, Yuan & Bai, Xuemei, 2023. "What EV users say about policy efficacy: Evidence from Shanghai," Transport Policy, Elsevier, vol. 132(C), pages 16-26.
    11. Huang, Xingjun & Lin, Yun & Lim, Ming K. & Zhou, Fuli & Liu, Feng, 2022. "Electric vehicle charging station diffusion: An agent-based evolutionary game model in complex networks," Energy, Elsevier, vol. 257(C).
    12. Wei Chen & Jian Chen & Guopeng Yin, 2022. "Exploring side effects of ridesharing services in urban China: role of pollution–averting behavior," Electronic Commerce Research, Springer, vol. 22(4), pages 1007-1034, December.
    13. Jakov Topić & Jure Soldo & Filip Maletić & Branimir Škugor & Joško Deur, 2020. "Virtual Simulation of Electric Bus Fleets for City Bus Transport Electrification Planning," Energies, MDPI, vol. 13(13), pages 1-24, July.
    14. Junchi Ma & Yuan Zhang & Zongtao Duan & Lei Tang, 2023. "PROLIFIC: Deep Reinforcement Learning for Efficient EV Fleet Scheduling and Charging," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    15. Khaleghikarahrodi, Mehrsa & Macht, Gretchen A., 2023. "Patterns, no patterns, that is the question: Quantifying users’ electric vehicle charging," Transport Policy, Elsevier, vol. 141(C), pages 291-304.
    16. Ouyang, Xu & Xu, Min, 2022. "Promoting green transportation under the belt and Road Initiative: Locating charging stations considering electric vehicle users’ travel behavior," Transport Policy, Elsevier, vol. 116(C), pages 58-80.
    17. Solvi Hoen, Fredrik & Díez-Gutiérrez, María & Babri, Sahar & Hess, Stephane & Tørset, Trude, 2023. "Charging electric vehicles on long trips and the willingness to pay to reduce waiting for charging. Stated preference survey in Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    18. Pillai, Arya & Curtis, John & Tovar Reanos, Miguel, 2021. "Spatial scenarios of potential electric vehicle adopters in Ireland," Papers WP705, Economic and Social Research Institute (ESRI).
    19. Wu, Xiaomei & Feng, Qijin & Bai, Chenchen & Lai, Chun Sing & Jia, Youwei & Lai, Loi Lei, 2021. "A novel fast-charging stations locational planning model for electric bus transit system," Energy, Elsevier, vol. 224(C).
    20. Albert Hiesl & Jasmine Ramsebner & Reinhard Haas, 2021. "Modelling Stochastic Electricity Demand of Electric Vehicles Based on Traffic Surveys—The Case of Austria," Energies, MDPI, vol. 14(6), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:51:y:2024:i:5:d:10.1007_s11116-023-10381-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.