IDEAS home Printed from https://ideas.repec.org/p/ags/pugtwp/332725.html
   My bibliography  Save this paper

Analyzing the Infrastructure Impacts of Free Trade Agreements

Author

Listed:
  • Bachmann, Christian

Abstract

This paper presents a modelling framework to analyze the domestic transportation impacts of FTAs. In general, the analysis requires: 1) a model of the global economy that quantifies the impacts of a FTA on international trade flows; 2) a multi-scale analysis that links changes in national production, consumption, and international imports and exports to subnational trade flows; and 3) a freight model that translates all trade flows into freight flows. Computable General Equilibrium (CGE) models such as the GTAP Model are currently the most suitable alternative for simulating complex economic policies such as FTAs because they comprehensively model the entire economy, the interdependency between all of its parts, and the microeconomic behavior within these parts. A Multi-Scale Multi-Regional Input-Output (MSMRIO) analysis then links global economic impacts to individual states, provinces, or regions using the interindustry and interregional structure of the national economy. Freight flow modeling can start with a commodity-based model in the initial implementation of the analysis, and once operational, models of logistics choices can be incorporated to upgrade the commodity-based model to an Aggregate-Disaggregate-Aggregate (ADA) freight model. A range of detail and theoretical consistencies in implementations is described in the paper, compromising data and labor requirements for the quantity and quality of the overall model’s capabilities. The complexity of the interactions between FTAs and the transportation system and the challenges of comprehensively modelling this process is also discussed. Preliminary results for partial implementations of the framework are presented for the CKFTA and CETA

Suggested Citation

  • Bachmann, Christian, 2016. "Analyzing the Infrastructure Impacts of Free Trade Agreements," Conference papers 332725, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
  • Handle: RePEc:ags:pugtwp:332725
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/332725/files/8180.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cristea, Anca & Hummels, David & Puzzello, Laura & Avetisyan, Misak, 2013. "Trade and the greenhouse gas emissions from international freight transport," Journal of Environmental Economics and Management, Elsevier, vol. 65(1), pages 153-173.
    2. Joseph Chow & Choon Yang & Amelia Regan, 2010. "State-of-the art of freight forecast modeling: lessons learned and the road ahead," Transportation, Springer, vol. 37(6), pages 1011-1030, November.
    3. Glyn Wittwer & Mark Horridge, 2010. "Bringing Regional Detail to a CGE Model using Census Data," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(2), pages 229-255.
    4. de Jong, Gerard & Ben-Akiva, Moshe, 2007. "A micro-simulation model of shipment size and transport chain choice," Transportation Research Part B: Methodological, Elsevier, vol. 41(9), pages 950-965, November.
    5. Ciuriak, Dan & Xiao, Jingliang, 2014. "The Impact of the Canada-Korea Free Trade Agreement as Negotiated," East Asian Economic Review, Korea Institute for International Economic Policy, vol. 18(4), pages 425-461, December.
    6. Gerard Jong & Inge Vierth & Lori Tavasszy & Moshe Ben-Akiva, 2013. "Recent developments in national and international freight transport models within Europe," Transportation, Springer, vol. 40(2), pages 347-371, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Megersa Abate & Inge Vierth & Rune Karlsson & Gerard Jong & Jaap Baak, 2019. "A disaggregate stochastic freight transport model for Sweden," Transportation, Springer, vol. 46(3), pages 671-696, June.
    2. Tapia, Rodrigo J. & de Jong, Gerard & Larranaga, Ana M. & Bettella Cybis, Helena B., 2020. "Application of MDCEV to infrastructure planning in regional freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 255-271.
    3. Ottemöller, Ole & Friedrich, Hanno, 2019. "Modelling change in supply-chain-structures and its effect on freight transport demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 121(C), pages 23-42.
    4. Ferrari, Paolo, 2018. "Some necessary conditions for the success of innovations in rail freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 747-758.
    5. Tapia, Rodrigo Javier & dos Santos Senna, Luiz Afonso & Larranaga, Ana Margarita & Cybis, Helena Beatriz Bettella, 2019. "Joint mode and port choice for soy production in Buenos Aires province, Argentina," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 121(C), pages 100-118.
    6. Zuo, Chengchoa & Birkin, Mark & Clarke, Graham & McEvoy, Fiona & Bloodworth, Andrew, 2018. "Reducing carbon emissions related to the transportation of aggregates: Is road or rail the solution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 26-38.
    7. Krisztin, Tamás, 2018. "Semi-parametric spatial autoregressive models in freight generation modeling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 121-143.
    8. Johansson, Magnus & Vierth, Inge & Holmgren, Kristina & Cullinane, Kevin, 2023. "How will electrification and increased use of new fuels affect the effectiveness of freight modal shift policies?," Working Papers 2023:4, Swedish National Road & Transport Research Institute (VTI).
    9. Démare, Thibaut & Bertelle, Cyrille & Dutot, Antoine & Lévêque, Laurent, 2017. "Modeling logistic systems with an agent-based model and dynamic graphs," Journal of Transport Geography, Elsevier, vol. 62(C), pages 51-65.
    10. Rodrigo J. Tapia & Gerard Jong & Ana M. Larranaga & Helena B. Bettella Cybis, 2021. "Exploring Multiple‐discreteness in Freight Transport. A Multiple Discrete Extreme Value Model Application for Grain Consolidators in Argentina," Networks and Spatial Economics, Springer, vol. 21(3), pages 581-608, September.
    11. Juan Gomez & José Manuel Vassallo, 2020. "Has heavy vehicle tolling in Europe been effective in reducing road freight transport and promoting modal shift?," Transportation, Springer, vol. 47(2), pages 865-892, April.
    12. Takanori Sakai & B. K. Bhavathrathan & André Alho & Tetsuro Hyodo & Moshe Ben-Akiva, 2020. "Commodity flow estimation for a metropolitan scale freight modeling system: supplier selection considering distribution channel using an error component logit mixture model," Transportation, Springer, vol. 47(2), pages 997-1025, April.
    13. Flitsch, Verena & Brümmerstedt, Katrin, 2015. "Freight Transport Modelling of Container Hinterland Supply Chains," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Blecker, Thorsten & Kersten, Wolfgang & Ringle, Christian M. (ed.), Operational Excellence in Logistics and Supply Chains: Optimization Methods, Data-driven Approaches and Security Insights. Proceedings of the Hamburg , volume 22, pages 233-266, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    14. Steffen Jaap Skotvoll Bakker & Jonas Martin & E. Ruben van Beesten & Ingvild Synn{o}ve Brynildsen & Anette Sandvig & Marit Siqveland & Antonia Golab, 2023. "STraM: A strategic network design model for national freight transport decarbonization," Papers 2304.14001, arXiv.org, revised Aug 2024.
    15. Sakai, Takanori & Romano Alho, André & Bhavathrathan, B.K. & Chiara, Giacomo Dalla & Gopalakrishnan, Raja & Jing, Peiyu & Hyodo, Tetsuro & Cheah, Lynette & Ben-Akiva, Moshe, 2020. "SimMobility Freight: An agent-based urban freight simulator for evaluating logistics solutions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    16. Yan, Shiyu & de Bruin, Kelly & Dennehy, Emer & Curtis, John, 2021. "Climate policies for freight transport: Energy and emission projections through 2050," Transport Policy, Elsevier, vol. 107(C), pages 11-23.
    17. Arencibia, Ana Isabel & Feo-Valero, María & García-Menéndez, Leandro & Román, Concepción, 2015. "Modelling mode choice for freight transport using advanced choice experiments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 252-267.
    18. Jensen, Anders Fjendbo & Thorhauge, Mikkel & de Jong, Gerard & Rich, Jeppe & Dekker, Thijs & Johnson, Daniel & Cabral, Manuel Ojeda & Bates, John & Nielsen, Otto Anker, 2019. "A disaggregate freight transport chain choice model for Europe," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 121(C), pages 43-62.
    19. Pelayo Arbués & José F. Baños, 2016. "A dynamic approach to road freight flows modeling in Spain," Transportation, Springer, vol. 43(3), pages 549-564, May.
    20. Chandra, Aitichya & Sharath, M.N. & Pani, Agnivesh & Sahu, Prasanta K., 2021. "A multi-objective genetic algorithm approach to design optimal zoning systems for freight transportation planning," Journal of Transport Geography, Elsevier, vol. 92(C).

    More about this item

    Keywords

    International Relations/Trade;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:pugtwp:332725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/gtpurus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.