IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v46y2019i3d10.1007_s11116-017-9828-5.html
   My bibliography  Save this article

An empirical study on aggregation of alternatives and its influence on prediction in car type choice models

Author

Listed:
  • Shiva Habibi

    (Chalmers University of Technology)

  • Emma Frejinger

    (University of Montreal)

  • Marcus Sundberg

    (KTH Royal Institute of Technology)

Abstract

Assessing and predicting car type choices are important for policy analysis. Car type choice models are often based on aggregate alternatives. This is due to the fact that analysts typically do not observe choices at the detailed level that they are made. In this paper, we use registry data of all new car purchases in Sweden for two years where cars are observed by their brand, model and fuel type. However, the choices are made at a more detailed level. Hence, an aggregate (observed) alternative can correspond to several disaggregate (detailed) alternatives. We present an extensive empirical study analyzing estimation results, in-sample and out-of-sample fit as well as prediction performance of five model specifications. These models use different aggregation methods from the literature. We propose a specification of a two-level nested logit model that captures correlation between aggregate and disaggregate alternatives. The nest specific scale parameters are defined as parameterized exponential functions to keep the number of parameters reasonable. The results show that the in-sample and out-of-sample fit as well as the prediction performance differ. The best model accounts for the heterogeneity over disaggregate alternatives as well as the correlation between both disaggregate and aggregate alternatives. It outperforms the commonly used aggregation method of simply including a size measure.

Suggested Citation

  • Shiva Habibi & Emma Frejinger & Marcus Sundberg, 2019. "An empirical study on aggregation of alternatives and its influence on prediction in car type choice models," Transportation, Springer, vol. 46(3), pages 563-582, June.
  • Handle: RePEc:kap:transp:v:46:y:2019:i:3:d:10.1007_s11116-017-9828-5
    DOI: 10.1007/s11116-017-9828-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-017-9828-5
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-017-9828-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mai, Tien & Fosgerau, Mogens & Frejinger, Emma, 2015. "A nested recursive logit model for route choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 100-112.
    2. Patrick Bayer & Robert McMillan & Kim Rueben, 2004. "An Equilibrium Model of Sorting in an Urban Housing Market," NBER Working Papers 10865, National Bureau of Economic Research, Inc.
    3. Beser Hugosson, Muriel & Algers, Staffan & Habibi, Shiva & Sundbergh, Pia, 2016. "Evaluation of the Swedish car fleet model using recent applications," Transport Policy, Elsevier, vol. 49(C), pages 30-40.
    4. Hensher, David A. & Le Plastrier, Vicki, 1985. "Towards a dynamic discrete-choice model of household automobile fleet size and composition," Transportation Research Part B: Methodological, Elsevier, vol. 19(6), pages 481-495, December.
    5. Daly, Andrew, 1982. "Estimating choice models containing attraction variables," Transportation Research Part B: Methodological, Elsevier, vol. 16(1), pages 5-15, February.
    6. Mabit, Stefan L., 2014. "Vehicle type choice under the influence of a tax reform and rising fuel prices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 32-42.
    7. Daly, Andrew & Bierlaire, Michel, 2006. "A general and operational representation of Generalised Extreme Value models," Transportation Research Part B: Methodological, Elsevier, vol. 40(4), pages 285-305, May.
    8. M. K. Haener & P. C. Boxall & W. L. Adamowicz & D. H. Kuhnke, 2004. "Aggregation Bias in Recreation Site Choice Models: Resolving the Resolution Problem," Land Economics, University of Wisconsin Press, vol. 80(4).
    9. Kenneth E. Train & Clifford Winston, 2007. "Vehicle Choice Behavior And The Declining Market Share Of U.S. Automakers," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1469-1496, November.
    10. Wong, Timothy & Brownstone, David & Bunch, David S., 2019. "Aggregation biases in discrete choice models," Journal of choice modelling, Elsevier, vol. 31(C), pages 210-221.
    11. Mai, Tien & Frejinger, Emma & Fosgerau, Mogens & Bastin, Fabian, 2017. "A dynamic programming approach for quickly estimating large network-based MEV models," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 179-197.
    12. George R. Parsons & Michael S. Needelman, 1992. "Site Aggregation in a Random Utility Model of Recreation," Land Economics, University of Wisconsin Press, vol. 68(4), pages 418-433.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naqavi, Fatemeh & Sundberg, Marcus & Västberg, Oskar Blom & Karlström, Anders & Hugosson, Muriel Beser, 2023. "Mobility constraints and accessibility to work: Application to Stockholm," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    2. Hackbarth, André & Madlener, Reinhard, 2018. "Combined Vehicle Type and Fuel Type Choices of Private Households: An Empirical Analysis for Germany," FCN Working Papers 17/2018, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised May 2019.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hung Tran & Tien Mai, 2023. "Network-based Representations and Dynamic Discrete Choice Models for Multiple Discrete Choice Analysis," Papers 2306.04606, arXiv.org.
    2. Yip, Arthur H.C. & Michalek, Jeremy J. & Whitefoot, Kate S., 2018. "On the implications of using composite vehicles in choice model prediction," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 163-188.
    3. Tran, Hung & Mai, Tien, 2024. "Network-based representations and dynamic discrete choice models for multiple discrete choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 184(C).
    4. Lurkin, Virginie & Garrow, Laurie A. & Higgins, Matthew J. & Newman, Jeffrey P. & Schyns, Michael, 2017. "Accounting for price endogeneity in airline itinerary choice models: An application to Continental U.S. markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 228-246.
    5. De Borger, Bruno & Mulalic, Ismir & Rouwendal, Jan, 2016. "Measuring the rebound effect with micro data: A first difference approach," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 1-17.
    6. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.
    7. Galarraga, Ibon & Kallbekken, Steffen & Silvestri, Alessandro, 2020. "Consumer purchases of energy-efficient cars: How different labelling schemes could affect consumer response to price changes," Energy Policy, Elsevier, vol. 137(C).
    8. Yongjie Ji & Joseph A. Herriges & Catherine L. Kling, 2016. "Modeling Recreation Demand When the Access Point Is Unknown," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(3), pages 860-880.
    9. Fiore Tinessa & Vittorio Marzano & Andrea Papola, 2021. "Choice probabilities and correlations in closed-form route choice models: specifications and drawbacks," Papers 2110.07224, arXiv.org.
    10. Oyama, Yuki & Hato, Eiji, 2019. "Prism-based path set restriction for solving Markovian traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 528-546.
    11. Mai, Tien, 2016. "A method of integrating correlation structures for a generalized recursive route choice model," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 146-161.
    12. von Haefen, Roger H. & Domanski, Adam, 2018. "Estimation and welfare analysis from mixed logit models with large choice sets," Journal of Environmental Economics and Management, Elsevier, vol. 90(C), pages 101-118.
    13. Mai, Tien & Frejinger, Emma & Fosgerau, Mogens & Bastin, Fabian, 2017. "A dynamic programming approach for quickly estimating large network-based MEV models," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 179-197.
    14. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2023. "Robust maximum capture facility location under random utility maximization models," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1128-1150.
    15. Backstrom, Jesse D. & Woodward, Richard T., 2017. "Using Qualitative Site Characteristics Data in Marine Recreational Fishing Models: A New Site Aggregation Approach," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258276, Agricultural and Applied Economics Association.
    16. Oyama, Yuki & Hara, Yusuke & Akamatsu, Takashi, 2022. "Markovian traffic equilibrium assignment based on network generalized extreme value model," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 135-159.
    17. Baltas, George & Saridakis, Charalampos, 2013. "An empirical investigation of the impact of behavioural and psychographic consumer characteristics on car preferences: An integrated model of car type choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 54(C), pages 92-110.
    18. Pyddoke, Roger & Swärdh, Jan-Erik & Algers, Staffan & Habibi, Shiva & Sedehi Zadeh, Noor, 2019. "Long-term responses to car-tax policies: distributional effects and reduced carbon emissions," Papers 2019:4, Research Programme in Transport Economics.
    19. Bekhor, Shlomo & Prashker, Joseph N., 2008. "GEV-based destination choice models that account for unobserved similarities among alternatives," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 243-262, March.
    20. Song, Yuchen & Li, Dawei & Liu, Dongjie & Cao, Qi & Chen, Junlan & Ren, Gang & Tang, Xiaoyong, 2022. "Modeling activity-travel behavior under a dynamic discrete choice framework with unobserved heterogeneity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:46:y:2019:i:3:d:10.1007_s11116-017-9828-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.