IDEAS home Printed from https://ideas.repec.org/p/cep/stiecm/328.html
   My bibliography  Save this paper

The Method of Simulated Scores for the Estimation of LDV Models

Author

Abstract

The method of simulated scores (MSS) is presented for estimating limited dependent variables models (LDV) with flexible correlation structure in the unobservables. We propose simulators that are continuous in the unknown parameter vectors, and hence standard optimization methods can be used to compute the MSS estimators that employ these simulators. The first continuous method relies on a recursive conditioning of the multivariate normal density through a Cholesky triangularization of its variance-covariance matrix. The second method combines results about the conditions of the multivariate normal distribution with Gibbs resampling techniques. We establish consistency and asymptotic normality of the MSS estimators and derive suitable rates at which the number of simulations must rise if biased simulators are used.

Suggested Citation

  • V A Hajivassiliou & DL McFadden, 1997. "The Method of Simulated Scores for the Estimation of LDV Models," STICERD - Econometrics Paper Series 328, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  • Handle: RePEc:cep:stiecm:328
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cep:stiecm:328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://sticerd.lse.ac.uk/_new/publications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.