IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v37y2011i4p331-362.html
   My bibliography  Save this article

The Performance of German Firms in the Business-Related Service Sectors Revisited: Differential Evolution Markov Chain Estimation of the Multinomial Probit Model

Author

Listed:
  • W. Kuiper
  • Anton Cozijnsen

Abstract

No abstract is available for this item.

Suggested Citation

  • W. Kuiper & Anton Cozijnsen, 2011. "The Performance of German Firms in the Business-Related Service Sectors Revisited: Differential Evolution Markov Chain Estimation of the Multinomial Probit Model," Computational Economics, Springer;Society for Computational Economics, vol. 37(4), pages 331-362, April.
  • Handle: RePEc:kap:compec:v:37:y:2011:i:4:p:331-362
    DOI: 10.1007/s10614-011-9259-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-011-9259-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10614-011-9259-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    2. Keane, Michael P, 1994. "A Computationally Practical Simulation Estimator for Panel Data," Econometrica, Econometric Society, vol. 62(1), pages 95-116, January.
    3. McFadden, Daniel L., 1984. "Econometric analysis of qualitative response models," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 24, pages 1395-1457, Elsevier.
    4. Geweke, John & Keane, Michael P & Runkle, David, 1994. "Alternative Computational Approaches to Inference in the Multinomial Probit Model," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 609-632, November.
    5. McCulloch, Robert E. & Polson, Nicholas G. & Rossi, Peter E., 2000. "A Bayesian analysis of the multinomial probit model with fully identified parameters," Journal of Econometrics, Elsevier, vol. 99(1), pages 173-193, November.
    6. Nguyen Van P. & Laisney F. & Kaiser U., 2004. "The Performance of German Firms in the Business-Related Service Sector: A Dynamic Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 274-295, July.
    7. Borsch-Supan, Axel & Hajivassiliou, Vassilis A., 1993. "Smooth unbiased multivariate probability simulators for maximum likelihood estimation of limited dependent variable models," Journal of Econometrics, Elsevier, vol. 58(3), pages 347-368, August.
    8. Mark J. Schervish, 1984. "Multivariate Normal Probabilities with Error Bound," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 33(1), pages 81-94, March.
    9. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    10. Chiara Monfardini & Joao Santos Silva, 2008. "What can we learn about correlations from multinomial probit estimates?," Economics Bulletin, AccessEcon, vol. 3(28), pages 1-9.
    11. Vassilis A. Hajivassiliou & Daniel L. McFadden, 1998. "The Method of Simulated Scores for the Estimation of LDV Models," Econometrica, Econometric Society, vol. 66(4), pages 863-896, July.
    12. Hess, Stephane & Train, Kenneth E. & Polak, John W., 2006. "On the use of a Modified Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit Model for vehicle choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 147-163, February.
    13. repec:ebl:ecbull:v:3:y:2008:i:28:p:1-9 is not listed on IDEAS
    14. Bolduc, Denis, 1999. "A practical technique to estimate multinomial probit models in transportation," Transportation Research Part B: Methodological, Elsevier, vol. 33(1), pages 63-79, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daziano, Ricardo A., 2015. "Inference on mode preferences, vehicle purchases, and the energy paradox using a Bayesian structural choice model," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 1-26.
    2. Kerem Tuzcuoglu, 2019. "Composite Likelihood Estimation of an Autoregressive Panel Probit Model with Random Effects," Staff Working Papers 19-16, Bank of Canada.
    3. Hajivassiliou, Vassilis A. & Ruud, Paul A., 1986. "Classical estimation methods for LDV models using simulation," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 40, pages 2383-2441, Elsevier.
    4. Maruyama, Shiko, 2014. "Estimation of finite sequential games," Journal of Econometrics, Elsevier, vol. 178(2), pages 716-726.
    5. Ziegler, Andreas, 2001. "Simulated z-tests in multinomial probit models," ZEW Discussion Papers 01-53, ZEW - Leibniz Centre for European Economic Research.
    6. Maksym, Obrizan, 2010. "A Bayesian Model of Sample Selection with a Discrete Outcome Variable," MPRA Paper 28577, University Library of Munich, Germany.
    7. Richard Gates, 2006. "A Mata Geweke–Hajivassiliou–Keane multivariate normal simulator," Stata Journal, StataCorp LP, vol. 6(2), pages 190-213, June.
    8. David Roodman, 2009. "Estimating Fully Observed Recursive Mixed-Process Models with cmp," Working Papers 168, Center for Global Development.
    9. Ricardo A. Daziano & Martin Achtnicht, 2014. "Forecasting Adoption of Ultra-Low-Emission Vehicles Using Bayes Estimates of a Multinomial Probit Model and the GHK Simulator," Transportation Science, INFORMS, vol. 48(4), pages 671-683, November.
    10. Vassilis A. Hajivassiliou, 1993. "Simulating Normal Rectangle Probabilities and Their Derivatives: The Effects of Vectorization," Cowles Foundation Discussion Papers 1049, Cowles Foundation for Research in Economics, Yale University.
    11. Xuemei Fu & Zhicai Juan, 2017. "Estimation of multinomial probit-kernel integrated choice and latent variable model: comparison on one sequential and two simultaneous approaches," Transportation, Springer, vol. 44(1), pages 91-116, January.
    12. Andreas Ziegler, 2007. "Simulated classical tests in multinomial probit models," Statistical Papers, Springer, vol. 48(4), pages 655-681, October.
    13. Shiko Maruyama, 2009. "Estimating Sequential-move Games by a Recursive Conditioning Simulator," Discussion Papers 2009-01, School of Economics, The University of New South Wales.
    14. Aßmann, Christian, 2007. "Determinants and Costs of Current Account Reversals under Heterogeneity and Serial Correlation," Economics Working Papers 2007-17, Christian-Albrechts-University of Kiel, Department of Economics.
    15. David Roodman, 2011. "Fitting fully observed recursive mixed-process models with cmp," Stata Journal, StataCorp LP, vol. 11(2), pages 159-206, June.
    16. JongRoul Woo & HyungBin Moon & Jongsu Lee & Jinyong Jang, 2017. "Public attitudes toward the construction of new power plants in South Korea," Energy & Environment, , vol. 28(4), pages 499-517, June.
    17. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    18. John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006. "Econometrics: A Bird’s Eye View," CESifo Working Paper Series 1870, CESifo.
    19. Hanna Hottenrott & Bettina Peters, 2012. "Innovative Capability and Financing Constraints for Innovation: More Money, More Innovation?," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1126-1142, November.
    20. González, M. & Minguez, R., 2005. "The Method Of Simulated Maximum Likelihood For The Estimaton Of Dynamic Ordered Probit: An Application To Country-Risk For Non-Developed Countries," International Journal of Applied Econometrics and Quantitative Studies, Euro-American Association of Economic Development, vol. 2(3), pages 99-133.

    More about this item

    Keywords

    Differential evolution; GHK; MCMC; MNP; Service sector; C13; C15; C25; L25;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • L25 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - Firm Performance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:37:y:2011:i:4:p:331-362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.