IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v43y2016i6d10.1007_s11116-016-9717-3.html
   My bibliography  Save this article

Examining the effects of out-of-home and in-home constraints on leisure activity participation in different seasons of the year

Author

Listed:
  • Nursitihazlin Ahmad Termida

    (KTH Royal Institute of Technology)

  • Yusak O. Susilo

    (KTH Royal Institute of Technology)

  • Joel P. Franklin

    (KTH Royal Institute of Technology)

Abstract

Using multi-day, multi-period travel diaries data of 56 days (four waves of two-week diaries) for 67 individuals in Stockholm, this study aims to examine the effects of out-of-home and in-home constraints (e.g. teleworking, studying at home, doing the laundry, cleaning and taking care of other household member[s]) on individuals’ day-to-day leisure activity participation decisions in four different seasons. This study also aims to explore the effects of various types of working schedules (fixed, shift, partial- and full-flexible) on individuals’ decisions to participate in day-to-day leisure activities. A pooled model (56 days) and wave-specific models (14 days in each wave) are estimated by using dynamic ordered Probit models. The effects of various types of working schedules are estimated by using 28 days of two waves’ data. The results show that an individual’s leisure activity participation decision is significantly influenced by out-of-home work durations but not influenced by in-home constraints, regardless of any seasons. Individuals with shift working hours engage less in day-to-day leisure activities than other workers’ types in both spring and summer seasons. The thermal indicator significantly affects individuals’ leisure activity participation decisions during the autumn season. Individuals exhibit routine behaviour characterized by repeated decisions in participating in day-to-day leisure activities that can last up to 14 days, regardless of any seasons.

Suggested Citation

  • Nursitihazlin Ahmad Termida & Yusak O. Susilo & Joel P. Franklin, 2016. "Examining the effects of out-of-home and in-home constraints on leisure activity participation in different seasons of the year," Transportation, Springer, vol. 43(6), pages 997-1021, November.
  • Handle: RePEc:kap:transp:v:43:y:2016:i:6:d:10.1007_s11116-016-9717-3
    DOI: 10.1007/s11116-016-9717-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-016-9717-3
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-016-9717-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kitamura, Ryuichi & Yamamoto, Toshiyuki & Susilo, Yusak O. & Axhausen, Kay W., 2006. "How routine is a routine? An analysis of the day-to-day variability in prism vertex location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(3), pages 259-279, March.
    2. Bernardo, Christina & Paleti, Rajesh & Hoklas, Megan & Bhat, Chandra, 2015. "An empirical investigation into the time-use and activity patterns of dual-earner couples with and without young children," Transportation Research Part A: Policy and Practice, Elsevier, vol. 76(C), pages 71-91.
    3. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
    4. Jeffrey M. Wooldridge, 2005. "Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 39-54, January.
    5. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    6. Meurs, Henk & Van Wissen, Leo & Visser, Jacqueline, 1989. "Measurement Biases in Panel Data," University of California Transportation Center, Working Papers qt00q1x266, University of California Transportation Center.
    7. Kay Axhausen & Andrea Zimmermann & Stefan Schönfelder & Guido Rindsfüser & Thomas Haupt, 2002. "Observing the rhythms of daily life: A six-week travel diary," Transportation, Springer, vol. 29(2), pages 95-124, May.
    8. Bhat, Chandra R. & Gossen, Rachel, 2004. "A mixed multinomial logit model analysis of weekend recreational episode type choice," Transportation Research Part B: Methodological, Elsevier, vol. 38(9), pages 767-787, November.
    9. Patricia L. Mokhtarian & Michael N. Bagley & Ilan Salomon, 1998. "The impact of gender, occupation, and presence of children on telecommuting motivations and constraints," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 49(12), pages 1115-1134.
    10. Arentze, Theo A. & Ettema, Dick & Timmermans, Harry J.P., 2011. "Estimating a model of dynamic activity generation based on one-day observations: Method and results," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 447-460, February.
    11. Stanley, John K. & Hensher, David A. & Stanley, Janet R. & Vella-Brodrick, Dianne, 2011. "Mobility, social exclusion and well-being: Exploring the links," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(8), pages 789-801, October.
    12. Mokhtarian, Patricia L., 1990. "A Typology of Relationships Between Telecommunications And Transportation," University of California Transportation Center, Working Papers qt4rx589m0, University of California Transportation Center.
    13. Ahmad Termida, Nursitihazlin & Susilo, Yusak O. & Franklin, Joel P., 2016. "Observing dynamic behavioural responses due to the extension of a tram line by using panel survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 78-95.
    14. Louviere,Jordan J. & Hensher,David A. & Swait,Joffre D., 2000. "Stated Choice Methods," Cambridge Books, Cambridge University Press, number 9780521788304, September.
    15. Bhat, Chandra R. & Singh, Sujit K., 2000. "A comprehensive daily activity-travel generation model system for workers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(1), pages 1-22, January.
    16. Spinney, Jamie E.L. & Scott, Darren M. & Newbold, K. Bruce, 2009. "Transport mobility benefits and quality of life: A time-use perspective of elderly Canadians," Transport Policy, Elsevier, vol. 16(1), pages 1-11, January.
    17. Kitamura, Ryuichi, 1990. "Panel Analysis in Transportation Planning: An Overview," University of California Transportation Center, Working Papers qt86v0f7zh, University of California Transportation Center.
    18. Aguiléra, Anne & Guillot, Caroline & Rallet, Alain, 2012. "Mobile ICTs and physical mobility: Review and research agenda," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 664-672.
    19. Meurs, Henk & Van Wissen, Leo & Visser, Jacqueline, 1989. "Measurement Biases in Panel Data," University of California Transportation Center, Working Papers qt4095q216, University of California Transportation Center.
    20. Bhat, Chandra R. & Srinivasan, Sivaramakrishnan, 2005. "A multidimensional mixed ordered-response model for analyzing weekend activity participation," Transportation Research Part B: Methodological, Elsevier, vol. 39(3), pages 255-278, March.
    21. Erika Spissu & Abdul Pinjari & Chandra Bhat & Ram Pendyala & Kay Axhausen, 2009. "An analysis of weekly out-of-home discretionary activity participation and time-use behavior," Transportation, Springer, vol. 36(5), pages 483-510, September.
    22. Kang, Hejun & Scott, Darren M., 2010. "Exploring day-to-day variability in time use for household members," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(8), pages 609-619, October.
    23. Liu, Chengxi & Susilo, Yusak O. & Karlström, Anders, 2014. "Examining the impact of weather variability on non-commuters’ daily activity–travel patterns in different regions of Sweden," Journal of Transport Geography, Elsevier, vol. 39(C), pages 36-48.
    24. Elisabetta Cherchi & Cinzia Cirillo, 2014. "Understanding variability, habit and the effect of long period activity plan in modal choices: a day to day, week to week analysis on panel data," Transportation, Springer, vol. 41(6), pages 1245-1262, November.
    25. Patricia Mokhtarian & Ilan Salomon & Susan Handy, 2006. "The Impacts of Ict on leisure Activities and Travel: A Conceptual Exploration," Transportation, Springer, vol. 33(3), pages 263-289, May.
    26. Anderson, T. W. & Hsiao, Cheng, 1982. "Formulation and estimation of dynamic models using panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 47-82, January.
    27. Bhat, Chandra R., 2008. "The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 274-303, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han Dong & Cinzia Cirillo & Marco Diana, 2018. "Activity involvement and time spent on computers for leisure: an econometric analysis on the American Time Use Survey dataset," Transportation, Springer, vol. 45(2), pages 429-449, March.
    2. La Paix Puello, Lissy & Chowdhury, Saidul & Geurs, Karst, 2019. "Using panel data for modelling duration dynamics of outdoor leisure activities," Journal of choice modelling, Elsevier, vol. 31(C), pages 141-155.
    3. Annesha Enam & Karthik C. Konduri & Naveen Eluru & Srinath Ravulaparthy, 2018. "Relationship between well-being and daily time use of elderly: evidence from the disabilities and use of time survey," Transportation, Springer, vol. 45(6), pages 1783-1810, November.
    4. La Paix Puello, Lissy & Olde-Kalter, Marie-José & Geurs, Karst T., 2017. "Measurement of non-random attrition effects on mobility rates using trip diaries data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 51-64.
    5. Charles Raux & Tai-Yu Ma & Eric Cornelis, 2011. "Variability versus stability in daily travel and activity behaviour. The case of a one week travel diary," Working Papers halshs-00612610, HAL.
    6. Abdul Rawoof Pinjari & Chandra R. Bhat, 2011. "Activity-based Travel Demand Analysis," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 10, Edward Elgar Publishing.
    7. Bhat, Chandra R. & Mondal, Aupal & Asmussen, Katherine E. & Bhat, Aarti C., 2020. "A multiple discrete extreme value choice model with grouped consumption data and unobserved budgets," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 196-222.
    8. Rodrigo J. Tapia & Gerard Jong & Ana M. Larranaga & Helena B. Bettella Cybis, 2021. "Exploring Multiple‐discreteness in Freight Transport. A Multiple Discrete Extreme Value Model Application for Grain Consolidators in Argentina," Networks and Spatial Economics, Springer, vol. 21(3), pages 581-608, September.
    9. Arentze, Theo A. & Ettema, Dick & Timmermans, Harry J.P., 2011. "Estimating a model of dynamic activity generation based on one-day observations: Method and results," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 447-460, February.
    10. Gosens, Tom & Rouwendal, Jan, 2018. "Nature-based outdoor recreation trips: Duration, travel mode and location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 513-530.
    11. Danalet, Antonin & Tinguely, Loïc & Lapparent, Matthieu de & Bierlaire, Michel, 2016. "Location choice with longitudinal WiFi data," Journal of choice modelling, Elsevier, vol. 18(C), pages 1-17.
    12. Bhat, Chandra R. & Astroza, Sebastian & Bhat, Aarti C. & Nagel, Kai, 2016. "Incorporating a multiple discrete-continuous outcome in the generalized heterogeneous data model: Application to residential self-selection effects analysis in an activity time-use behavior model," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 52-76.
    13. Konstadinos G. Goulias & Ram M. Pendyala, 2014. "Choice context," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 5, pages 101-130, Edward Elgar Publishing.
    14. Reinhard Hössinger & Florian Aschauer & Sergio Jara-Díaz & Simona Jokubauskaite & Basil Schmid & Stefanie Peer & Kay W. Axhausen & Regine Gerike, 2020. "A joint time-assignment and expenditure-allocation model: value of leisure and value of time assigned to travel for specific population segments," Transportation, Springer, vol. 47(3), pages 1439-1475, June.
    15. Lai, Xinjun & Lam, William H.K. & Su, Junbiao & Fu, Hui, 2019. "Modelling intra-household interactions in time-use and activity patterns of retired and dual-earner couples," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 172-194.
    16. Sikder, Sujan & Pinjari, Abdul Rawoof, 2013. "The benefits of allowing heteroscedastic stochastic distributions in multiple discrete-continuous choice models," Journal of choice modelling, Elsevier, vol. 9(C), pages 39-56.
    17. Daniel, Aemiro Melkamu, 2020. "Towards Sustainable Energy Consumption Electricity Demand Flexibility and Household Fuel Choice," Umeå Economic Studies 971, Umeå University, Department of Economics.
    18. Jokubauskaitė, Simona & Hössinger, Reinhard & Aschauer, Florian & Gerike, Regine & Jara-Díaz, Sergio & Peer, Stefanie & Schmid, Basil & Axhausen, Kay W. & Leisch, Friedrich, 2019. "Advanced continuous-discrete model for joint time-use expenditure and mode choice estimation," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 397-421.
    19. Makoto Chikaraishi & Akimasa Fujiwara & Junyi Zhang & Kay Axhausen, 2011. "Identifying variations and co-variations in discrete choice models," Transportation, Springer, vol. 38(6), pages 993-1016, November.
    20. Castro, Marisol & Bhat, Chandra R. & Pendyala, Ram M. & Jara-Díaz, Sergio R., 2012. "Accommodating multiple constraints in the multiple discrete–continuous extreme value (MDCEV) choice model," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 729-743.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:43:y:2016:i:6:d:10.1007_s11116-016-9717-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.