IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i24p4005-d1548688.html
   My bibliography  Save this article

Cooperative Behavior of Prosumers in Integrated Energy Systems

Author

Listed:
  • Natalia Aizenberg

    (Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia)

  • Evgeny Barakhtenko

    (Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia)

  • Gleb Mayorov

    (Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia)

Abstract

The technical complexity of organizing energy systems’ operation has recently been compounded by the complexity of reconciling the interests of individual entities involved in interactions. This study proposes a possible solution to the problem of modeling their relationships within a large system. Our solution takes into account multiple levels of interactions, imperfect information, and conflicting interests. We present a mathematical statement of the problem of optimal interactions between the centralized system and prosumers in the integrated energy system (IES) with due consideration of the layered architecture of the IES. The paper also contributes a model for arranging the interactions between centralized and distributed energy sources for cases when IES prosumers form coalitions. The implementation of this model is based on multi-agent techniques and cooperative game theory tools. In order to arrive at a rational arrangement of the interactions of prosumers in the IES, the model implements different approaches to the allocation of the coalition’s total payoff (the Shapley value, Modiclus, PreNucleolus solution concepts). Furthermore, we propose a criterion for deciding on the “best” imputation. We contribute a multi-agent system that implements the proposed model and use a test IES setup to validate the model by simulations. The results of the simulations ensure optimal interactions between the entities involved in the energy supply process within the IES and driven by their own interests. The results also elucidate the conditions that make it feasible for prosumers to form coalitions.

Suggested Citation

  • Natalia Aizenberg & Evgeny Barakhtenko & Gleb Mayorov, 2024. "Cooperative Behavior of Prosumers in Integrated Energy Systems," Mathematics, MDPI, vol. 12(24), pages 1-29, December.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:24:p:4005-:d:1548688
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/24/4005/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/24/4005/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rodica Branzei & Dinko Dimitrov & Stef Tijs, 2008. "Models in Cooperative Game Theory," Springer Books, Springer, edition 0, number 978-3-540-77954-4, March.
    2. Di Silvestre, Maria Luisa & Favuzza, Salvatore & Riva Sanseverino, Eleonora & Zizzo, Gaetano, 2018. "How Decarbonization, Digitalization and Decentralization are changing key power infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 483-498.
    3. Tang, Rui & Wang, Shengwei & Li, Hangxin, 2019. "Game theory based interactive demand side management responding to dynamic pricing in price-based demand response of smart grids," Applied Energy, Elsevier, vol. 250(C), pages 118-130.
    4. Harrold, Daniel J.B. & Cao, Jun & Fan, Zhong, 2022. "Renewable energy integration and microgrid energy trading using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 318(C).
    5. Jeroen Kuipers & Ulrich Faigle & Walter Kern, 2001. "On the computation of the nucleolus of a cooperative game," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(1), pages 79-98.
    6. Lo Prete, Chiara & Hobbs, Benjamin F., 2016. "A cooperative game theoretic analysis of incentives for microgrids in regulated electricity markets," Applied Energy, Elsevier, vol. 169(C), pages 524-541.
    7. Stennikov, Valery & Barakhtenko, Evgeny & Mayorov, Gleb & Sokolov, Dmitry & Zhou, Bin, 2022. "Coordinated management of centralized and distributed generation in an integrated energy system using a multi-agent approach," Applied Energy, Elsevier, vol. 309(C).
    8. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Yan, Yi & Liu, Mingqi & Tian, Chongyi & Li, Ji & Li, Ke, 2024. "Multi-layer game theory based operation optimisation of ICES considering improved independent market participant models and dedicated distributed algorithms," Applied Energy, Elsevier, vol. 373(C).
    10. Zhang, Bin & Hu, Weihao & Ghias, Amer M.Y.M. & Xu, Xiao & Chen, Zhe, 2023. "Two-timescale autonomous energy management strategy based on multi-agent deep reinforcement learning approach for residential multicarrier energy system," Applied Energy, Elsevier, vol. 351(C).
    11. Du, Yan & Wang, Zhiwei & Liu, Guangyi & Chen, Xi & Yuan, Haoyu & Wei, Yanli & Li, Fangxing, 2018. "A cooperative game approach for coordinating multi-microgrid operation within distribution systems," Applied Energy, Elsevier, vol. 222(C), pages 383-395.
    12. N. I. Voropai & V. A. Stennikov & E. A. Barakhtenko, 2017. "Integrated energy systems: Challenges, trends, philosophy," Studies on Russian Economic Development, Springer, vol. 28(5), pages 492-499, September.
    13. Bezalel Peleg & Peter Sudhölter, 2007. "Introduction to the Theory of Cooperative Games," Theory and Decision Library C, Springer, edition 0, number 978-3-540-72945-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Bok & Martin Černý, 2024. "1-convex extensions of incomplete cooperative games and the average value," Theory and Decision, Springer, vol. 96(2), pages 239-268, March.
    2. Churkin, Andrey & Bialek, Janusz & Pozo, David & Sauma, Enzo & Korgin, Nikolay, 2021. "Review of Cooperative Game Theory applications in power system expansion planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Peter Knudsen & Lars Østerdal, 2012. "Merging and splitting in cooperative games: some (im)possibility results," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(4), pages 763-774, November.
    4. Le Breton, Michel & Montero, Maria & Zaporozhets, Vera, 2012. "Voting power in the EU council of ministers and fair decision making in distributive politics," Mathematical Social Sciences, Elsevier, vol. 63(2), pages 159-173.
    5. Abada, I. & Ehrenmann, A. & Lambin, X., 2017. "On the viability of energy communities," Cambridge Working Papers in Economics 1740, Faculty of Economics, University of Cambridge.
    6. Brânzei, R. & Fragnelli, V. & Meca, A. & Tijs, S.H., 2006. "Two Classes of Cooperative Games Related to One-Object Auction Situations," Discussion Paper 2006-25, Tilburg University, Center for Economic Research.
    7. Guni Orshan & Peter Sudhölter, 2012. "Nonsymmetric variants of the prekernel and the prenucleolus," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(4), pages 809-828, November.
    8. Calleja, Pedro & Llerena, Francesc & Sudhölter, Peter, 2021. "Axiomatizations of Dutta-Ray’s egalitarian solution on the domain of convex games," Journal of Mathematical Economics, Elsevier, vol. 95(C).
    9. Matt Van Essen, 2024. "Equity Equilibrium for Cooperative Games," Working Papers 2024-04, University of Tennessee, Department of Economics.
    10. Ibrahim Abada, Andreas Ehrenmann, and Xavier Lambin, 2020. "On the Viability of Energy Communities," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    11. Fioriti, Davide & Frangioni, Antonio & Poli, Davide, 2021. "Optimal sizing of energy communities with fair revenue sharing and exit clauses: Value, role and business model of aggregators and users," Applied Energy, Elsevier, vol. 299(C).
    12. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," Annals of Operations Research, Springer, vol. 204(1), pages 33-64, April.
    13. Péter Biró & Walter Kern & Daniël Paulusma, 2012. "Computing solutions for matching games," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(1), pages 75-90, February.
    14. Miroslav Prokić, 2023. "The applicability of Cooperative Game Theory in Rail Freight Corridors Framework," Shaping Post-COVID World – Challenges for Economic Theory and Policy, in: Aleksandra Praščević & Miomir Jakšić & Mihail Arandarenko & Dejan Trifunović & Milutin Ješić (ed.),Shaping Post-COVID World – Challenges for Economic Theory and Policy, chapter 14, pages 305-320, Faculty of Economics and Business, University of Belgrade.
    15. J. Arin & I. Katsev, 2016. "A monotonic core solution for convex TU games," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(4), pages 1013-1029, November.
    16. Katsev, Ilya & Arin Aguirre, Francisco Javier, 2011. "The SD-prenucleolus for TU games," IKERLANAK 2011-56, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    17. Longxi Li, 2020. "Optimal Coordination Strategies for Load Service Entity and Community Energy Systems Based on Centralized and Decentralized Approaches," Energies, MDPI, vol. 13(12), pages 1-22, June.
    18. repec:ehu:ikerla:34464 is not listed on IDEAS
    19. Aleksandra Praščević & Miomir Jakšić & Mihail Arandarenko & Dejan Trifunović & Milutin Ješić (ed.), 2023. "Shaping Post-COVID World – Challenges for Economic Theory and Policy," Shaping Post-COVID World – Challenges for Economic Theory and Policy, Faculty of Economics and Business, University of Belgrade, number 23, October –.
    20. repec:hal:pseose:hal-00803233 is not listed on IDEAS
    21. repec:ehu:ikerla:6230 is not listed on IDEAS
    22. Guajardo, Mario & Jörnsten, Kurt, 2015. "Common mistakes in computing the nucleolus," European Journal of Operational Research, Elsevier, vol. 241(3), pages 931-935.
    23. R. Branzei & E. Gutiérrez & N. Llorca & J. Sánchez-Soriano, 2021. "Does it make sense to analyse a two-sided market as a multi-choice game?," Annals of Operations Research, Springer, vol. 301(1), pages 17-40, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:24:p:4005-:d:1548688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.