Volatility forecasting in the Chinese commodity futures market with intraday data
Author
Abstract
Suggested Citation
DOI: 10.1007/s11156-016-0570-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Martens, Martin, 2001. "Forecasting daily exchange rate volatility using intraday returns," Journal of International Money and Finance, Elsevier, vol. 20(1), pages 1-23, February.
- Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
- Martin Martens & Jason Zein, 2004. "Predicting financial volatility: High‐frequency time‐series forecasts vis‐à‐vis implied volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 24(11), pages 1005-1028, November.
- West, Kenneth D, 1996.
"Asymptotic Inference about Predictive Ability,"
Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
- West, K.D., 1994. "Asymptotic Inference About Predictive Ability," Working papers 9417, Wisconsin Madison - Social Systems.
- Kenneth D. West, 1994. "Asymptotic Inference About Predictive Ability," Macroeconomics 9410002, University Library of Munich, Germany.
- Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
- Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
- Richard T. Baillie & Young-Wook Han & Robert J. Myers & Jeongseok Song, 2007. "Long Memory and FIGARCH Models for Daily and High Frequency Commodity Prices," Working Papers 594, Queen Mary University of London, School of Economics and Finance.
- Baker, Malcolm & Stein, Jeremy C., 2004.
"Market liquidity as a sentiment indicator,"
Journal of Financial Markets, Elsevier, vol. 7(3), pages 271-299, June.
- Malcolm Baker & Jeremy C. Stein, 2002. "Market Liquidity as a Sentiment Indicator," Harvard Institute of Economic Research Working Papers 1977, Harvard - Institute of Economic Research.
- Malcolm Baker & Jeremy C. Stein, 2002. "Market Liquidity as a Sentiment Indicator," NBER Working Papers 8816, National Bureau of Economic Research, Inc.
- Geert Bekaert & Campbell R. Harvey & Christian Lundblad, 2007.
"Liquidity and Expected Returns: Lessons from Emerging Markets,"
The Review of Financial Studies, Society for Financial Studies, vol. 20(6), pages 1783-1831, November.
- Geert Bekaert & Campbell R. Harvey & Christian Lundblad, 2005. "Liquidity and Expected Returns: Lessons From Emerging Markets," NBER Working Papers 11413, National Bureau of Economic Research, Inc.
- Harvey, Campbell & Bekaert, Geert & Lundblad, Christian T, 2006. "Liquidity and Expected Returns: Lessons from Emerging Markets," CEPR Discussion Papers 5946, C.E.P.R. Discussion Papers.
- Carolyn W. Chang & Jack S. K. Chang, 1993. "An Implicit Measure Of The Effective Bid‐Ask Spread: A Note," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 16(1), pages 71-75, March.
- Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012.
"Jump-robust volatility estimation using nearest neighbor truncation,"
Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
- Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2009. "Jump-Robust Volatility Estimation using Nearest Neighbor Truncation," CREATES Research Papers 2009-52, Department of Economics and Business Economics, Aarhus University.
- Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2010. "Jump-robust volatility estimation using nearest neighbor truncation," Staff Reports 465, Federal Reserve Bank of New York.
- Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2009. "Jump-Robust Volatility Estimation using Nearest Neighbor Truncation," NBER Working Papers 15533, National Bureau of Economic Research, Inc.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Peter C. B. Phillips & Jun Yu, 2023.
"Information loss in volatility measurement with flat price trading,"
Empirical Economics, Springer, vol. 64(6), pages 2957-2999, June.
- Peter C.B. Phillips & Jun Yu, 2007. "Information Loss in Volatility Measurement with Flat Price Trading," Levine's Bibliography 321307000000000805, UCLA Department of Economics.
- Peter C. B. Phillips & Jun Yu, 2009. "Information Loss in Volatility Measurement with Flat Price Trading," Global COE Hi-Stat Discussion Paper Series gd08-039, Institute of Economic Research, Hitotsubashi University.
- Peter C.B.Phillips & Jun Yu, 2008. "Information Loss in Volatility Measurement with Flat Price Trading," Working Papers CoFie-01-2008, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Peter C.B. Phillips & Jun Yu, 2007. "Information Loss in Volatility Measurement with Flat Price Trading," Cowles Foundation Discussion Papers 1598, Cowles Foundation for Research in Economics, Yale University.
- Fung, Hung-Gay & Leung, Wai K & Xu, Xiaoqing Eleanor, 2003. "Information Flows between the U.S. and China Commodity Futures Trading," Review of Quantitative Finance and Accounting, Springer, vol. 21(3), pages 267-285, November.
- Richard T. Baillie & Young‐Wook Han & Robert J. Myers & Jeongseok Song, 2007. "Long memory models for daily and high frequency commodity futures returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(7), pages 643-668, July.
- Mei-Maun Hseu & Huimin Chung & Erh-Yin Sun, 2007. "Price Discovery across the Stock Index Futures and the ETF Markets: Intra-Day Evidence from the S&P 500, Nasdaq-100 and DJIA Indices," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 215-236.
- Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
- Richard T. Baillie & Aydin A. Cecen & Young-Wook Han, 2000. "High Frequency Deutsche Mark-US Dollar Returns: FIGARCH Representations and Non Linearities," Multinational Finance Journal, Multinational Finance Journal, vol. 4(3-4), pages 247-267, September.
- Li, Hongquan & Hong, Yongmiao, 2011. "Financial volatility forecasting with range-based autoregressive volatility model," Finance Research Letters, Elsevier, vol. 8(2), pages 69-76, June.
- Richard T. Baillie & Young-Wook Han & Robert J. Myers & Jeongseok Song, 2007. "Long Memory and FIGARCH Models for Daily and High Frequency Commodity Prices," Working Papers 594, Queen Mary University of London, School of Economics and Finance.
- Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
- Baillie, Richard T. & Morana, Claudio, 2009.
"Modelling long memory and structural breaks in conditional variances: An adaptive FIGARCH approach,"
Journal of Economic Dynamics and Control, Elsevier, vol. 33(8), pages 1577-1592, August.
- Richard T. Baillie & Claudio Morana, 2007. "Modeling Long Memory and Structural Breaks in Conditional Variances: an Adaptive FIGARCH Approach," ICER Working Papers - Applied Mathematics Series 11-2007, ICER - International Centre for Economic Research.
- Richard T. Baillie & Claudio Morana, 2014. "Modeling Long Memory and Structural Breaks in Conditional Variances: An Adaptive FIGARCH Approach," Working Papers 593, Queen Mary University of London, School of Economics and Finance.
- Ahmed, Shamim & Liu, Xiaoquan & Valente, Giorgio, 2016. "Can currency-based risk factors help forecast exchange rates?," International Journal of Forecasting, Elsevier, vol. 32(1), pages 75-97.
- Andrews, Donald W K & Monahan, J Christopher, 1992.
"An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator,"
Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
- Donald W.K. Andrews & Christopher J. Monahan, 1990. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Cowles Foundation Discussion Papers 942, Cowles Foundation for Research in Economics, Yale University.
- Lee, Hsiang-Tai, 2009. "Optimal futures hedging under jump switching dynamics," Journal of Empirical Finance, Elsevier, vol. 16(3), pages 446-456, June.
- Lesmond, David A & Ogden, Joseph P & Trzcinka, Charles A, 1999. "A New Estimate of Transaction Costs," The Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 1113-1141.
- Weihua Shi & Cheng-Few Lee, 2008. "Volatility Persistence of High-Frequency Returns in the Japanese Government Bond Futures Market," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 11(04), pages 511-530.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
- Chortareas, Georgios & Jiang, Ying & Nankervis, John. C., 2011. "Forecasting exchange rate volatility using high-frequency data: Is the euro different?," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1089-1107, October.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003.
"Modeling and Forecasting Realized Volatility,"
Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
- Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996.
"Fractionally integrated generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
- Tom Doan, "undated". "RATS programs to replicate Baillie, Bollerslev, Mikkelson FIGARCH results," Statistical Software Components RTZ00009, Boston College Department of Economics.
- Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
- Yang, Dennis & Zhang, Qiang, 2000. "Drift-Independent Volatility Estimation Based on High, Low, Open, and Close Prices," The Journal of Business, University of Chicago Press, vol. 73(3), pages 477-491, July.
- Bandi, Federico M. & Russell, Jeffrey R., 2006. "Separating microstructure noise from volatility," Journal of Financial Economics, Elsevier, vol. 79(3), pages 655-692, March.
- Qingfu Liu & Michael T. Chng & Dongxia Xu, 2014. "Hedging Industrial Metals With Stochastic Volatility Models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(8), pages 704-730, August.
- Taylor, Stephen J. & Xu, Xinzhong, 1997. "The incremental volatility information in one million foreign exchange quotations," Journal of Empirical Finance, Elsevier, vol. 4(4), pages 317-340, December.
- Ana-Maria Fuertes & Elena Kalotychou & Natasa Todorovic, 2015. "Daily volume, intraday and overnight returns for volatility prediction: profitability or accuracy?," Review of Quantitative Finance and Accounting, Springer, vol. 45(2), pages 251-278, August.
- George, Thomas J & Kaul, Gautam & Nimalendran, M, 1991. "Estimation of the Bid-Ask Spread and Its Components: A New Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 623-656.
- Roll, Richard, 1984. "A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient Market," Journal of Finance, American Finance Association, vol. 39(4), pages 1127-1139, September.
- Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
- Goyenko, Ruslan Y. & Holden, Craig W. & Trzcinka, Charles A., 2009. "Do liquidity measures measure liquidity?," Journal of Financial Economics, Elsevier, vol. 92(2), pages 153-181, May.
- C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fan, John Hua & Mo, Di & Zhang, Tingxi, 2022. "The “necessary evil” in Chinese commodity markets," Journal of Commodity Markets, Elsevier, vol. 25(C).
- Haidong Cai & Shamim Ahmed & Ying Jiang & Xiaoquan Liu, 2020. "The impact of US macroeconomic news announcements on Chinese commodity futures," Quantitative Finance, Taylor & Francis Journals, vol. 20(12), pages 1927-1966, December.
- Bernard Ben Sita, 2019. "Crude oil and gasoline volatility risk into a Realized-EGARCH model," Review of Quantitative Finance and Accounting, Springer, vol. 53(3), pages 701-720, October.
- Ye, Wuyi & Guo, Ranran & Deschamps, Bruno & Jiang, Ying & Liu, Xiaoquan, 2021. "Macroeconomic forecasts and commodity futures volatility," Economic Modelling, Elsevier, vol. 94(C), pages 981-994.
- Li, Jianping & Li, Guowen & Liu, Mingxi & Zhu, Xiaoqian & Wei, Lu, 2022. "A novel text-based framework for forecasting agricultural futures using massive online news headlines," International Journal of Forecasting, Elsevier, vol. 38(1), pages 35-50.
- Phillip A. Cartwright & Natalija Riabko, 2019. "Do spot food commodity and oil prices predict futures prices?," Review of Quantitative Finance and Accounting, Springer, vol. 53(1), pages 153-194, July.
- Chuxuan Xiao & Winifred Huang & David P. Newton, 2024. "Predicting expected idiosyncratic volatility: Empirical evidence from ARFIMA, HAR, and EGARCH models," Review of Quantitative Finance and Accounting, Springer, vol. 63(3), pages 979-1006, October.
- Bruno Deschamps & Tianlun Fei & Ying Jiang & Xiaoquan Liu, 2022. "Procyclical volatility in Chinese stock markets," Review of Quantitative Finance and Accounting, Springer, vol. 58(3), pages 1117-1144, April.
- John Hua Fan & Tingxi Zhang, 2020. "The untold story of commodity futures in China," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(4), pages 671-706, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sévi, Benoît, 2014.
"Forecasting the volatility of crude oil futures using intraday data,"
European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
- Benoît Sévi, 2014. "Forecasting the volatility of crude oil futures using intraday data," Post-Print hal-01463921, HAL.
- Benoît Sévi, 2014. "Forecasting the volatility of crude oil futures using intraday data," Working Papers 2014-53, Department of Research, Ipag Business School.
- Bertrand B. Maillet & Jean-Philippe R. M�decin, 2010. "Extreme Volatilities, Financial Crises and L-moment Estimations of Tail-indexes," Working Papers 2010_10, Department of Economics, University of Venice "Ca' Foscari".
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
- Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018.
"Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks,"
Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 1-25, March.
- Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Post-Print hal-01982032, HAL.
- Chu, Carlin C.F. & Lam, K.P., 2011. "Modeling intraday volatility: A new consideration," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(3), pages 388-418, July.
- Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
- Georgios Chortareas & John Nankervis & Ying Jiang, 2007. "Forecasting Exchange Rate Volatility with High Frequency Data: Is the Euro Different?," Money Macro and Finance (MMF) Research Group Conference 2006 79, Money Macro and Finance Research Group.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005.
"Volatility forecasting,"
CFS Working Paper Series
2005/08, Center for Financial Studies (CFS).
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," NBER Working Papers 11188, National Bureau of Economic Research, Inc.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
- Chen, Yong & Eaton, Gregory W. & Paye, Bradley S., 2018. "Micro(structure) before macro? The predictive power of aggregate illiquidity for stock returns and economic activity," Journal of Financial Economics, Elsevier, vol. 130(1), pages 48-73.
- Richard D. F. Harris & Murat Mazibas, 2022. "A component Markov regime‐switching autoregressive conditional range model," Bulletin of Economic Research, Wiley Blackwell, vol. 74(2), pages 650-683, April.
- Wu, Ming & Ohk, Ki Yool, 2023. "Who benefits more? Shanghai-Hong Kong stock Connect—“Through Train”," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 409-427.
- Gregory Connor & Lisa R. Goldberg & Robert A. Korajczyk, 2010. "Portfolio Risk Analysis," Economics Books, Princeton University Press, edition 1, number 9224.
- repec:ipg:wpaper:2014-053 is not listed on IDEAS
- Yang, Ke & Tian, Fengping & Chen, Langnan & Li, Steven, 2017. "Realized volatility forecast of agricultural futures using the HAR models with bagging and combination approaches," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 276-291.
- Anagnostidis, Panagiotis & Emmanouilides, Christos J., 2015. "Nonlinearity in high-frequency stock returns: Evidence from the Athens Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 473-487.
- Mario Domingues de Paula Simões & Marcelo Cabus Klotzle & Antonio Carlos Figueiredo Pinto & Leonardo Lima Gomes, 2016. "Electricity prices forecast analysis using the extreme value theory," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 5(1), pages 1-22.
- Lyócsa, Štefan & Molnár, Peter & Výrost, Tomáš, 2021. "Stock market volatility forecasting: Do we need high-frequency data?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1092-1110.
- Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
- Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013.
"Econometric modeling of exchange rate volatility and jumps,"
Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427,
Edward Elgar Publishing.
- Deniz Erdemlioglu & Sebastien Laurent & Christopher J. Neely, 2012. "Econometric modeling of exchange rate volatility and jumps," Working Papers 2012-008, Federal Reserve Bank of St. Louis.
More about this item
Keywords
Out-of-sample predictability; Long memory time series; Futures market regulation; Realized volatility; Econometric models;All these keywords.
JEL classification:
- C5 - Mathematical and Quantitative Methods - - Econometric Modeling
- G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
- G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:rqfnac:v:48:y:2017:i:4:d:10.1007_s11156-016-0570-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.