IDEAS home Printed from https://ideas.repec.org/a/kap/revdev/v23y2020i3d10.1007_s11147-020-09166-0.html
   My bibliography  Save this article

Option-implied information: What’s the vol surface got to do with it?

Author

Listed:
  • Maxim Ulrich

    (Karlsruhe Institute of Technology (KIT))

  • Simon Walther

    (Karlsruhe Institute of Technology (KIT))

Abstract

We find that option-implied information such as forward-looking variance, skewness and the variance risk premium are sensitive to the way the volatility surface is constructed. For some state-of-the-art volatility surfaces, the differences are economically surprisingly large and lead to systematic biases, especially for out-of-the-money put options. Estimates for risk-neutral variance differ across volatility surfaces by more than 10% on average, leading to variance risk premium estimates that differ by 60% on average. The variations are even larger for risk-neutral skewness. To overcome this problem, we propose a volatility surface that is built with a one-dimensional kernel regression. We assess its statistical accuracy relative to existing state-of-the-art parametric, semi- and non-parametric volatility surfaces by means of leave-one-out cross-validation, including the volatility surface of OptionMetrics. Based on 14 years of end-of-day and intraday S&P 500 and Euro Stoxx 50 option data we conclude that the proposed one-dimensional kernel regression represents option market information more accurately than existing approaches of the literature.

Suggested Citation

  • Maxim Ulrich & Simon Walther, 2020. "Option-implied information: What’s the vol surface got to do with it?," Review of Derivatives Research, Springer, vol. 23(3), pages 323-355, October.
  • Handle: RePEc:kap:revdev:v:23:y:2020:i:3:d:10.1007_s11147-020-09166-0
    DOI: 10.1007/s11147-020-09166-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11147-020-09166-0
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11147-020-09166-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jonathan H. Wright, 2016. "Options-Implied Probability Density Functions for Real Interest Rates," International Journal of Central Banking, International Journal of Central Banking, vol. 12(3), pages 129-149, September.
    2. Beber, Alessandro & Brandt, Michael W., 2006. "The effect of macroeconomic news on beliefs and preferences: Evidence from the options market," Journal of Monetary Economics, Elsevier, vol. 53(8), pages 1997-2039, November.
    3. Ian Martin, 2017. "What is the Expected Return on the Market?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(1), pages 367-433.
    4. Ian W. R. Martin & Christian Wagner, 2019. "What Is the Expected Return on a Stock?," Journal of Finance, American Finance Association, vol. 74(4), pages 1887-1929, August.
    5. Tim Bollerslev & Viktor Todorov, 2011. "Tails, Fears, and Risk Premia," Journal of Finance, American Finance Association, vol. 66(6), pages 2165-2211, December.
    6. George J. Jiang & Yisong S. Tian, 2005. "The Model-Free Implied Volatility and Its Information Content," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1305-1342.
    7. Jackwerth, Jens Carsten, 1999. "Option Implied Risk-Neutral Distributions and Implied Binomial Trees: A Literature Review," MPRA Paper 11634, University Library of Munich, Germany.
    8. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.
    9. Jackwerth, Jens Carsten, 2000. "Recovering Risk Aversion from Option Prices and Realized Returns," The Review of Financial Studies, Society for Financial Studies, vol. 13(2), pages 433-451.
    10. Matthias Fengler, 2009. "Arbitrage-free smoothing of the implied volatility surface," Quantitative Finance, Taylor & Francis Journals, vol. 9(4), pages 417-428.
    11. Gurdip Bakshi & Nikunj Kapadia & Dilip Madan, 2003. "Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options," The Review of Financial Studies, Society for Financial Studies, vol. 16(1), pages 101-143.
    12. Adrian Buss & Grigory Vilkov, 2012. "Measuring Equity Risk with Option-implied Correlations," The Review of Financial Studies, Society for Financial Studies, vol. 25(10), pages 3113-3140.
    13. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    14. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    15. Jackwerth, Jens Carsten & Rubinstein, Mark, 1996. "Recovering Probability Distributions from Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1611-1632, December.
    16. Joost Driessen & Pascal J. Maenhout & Grigory Vilkov, 2009. "The Price of Correlation Risk: Evidence from Equity Options," Journal of Finance, American Finance Association, vol. 64(3), pages 1377-1406, June.
    17. Bo Zhao & Stewart Hodges, 2013. "Parametric modeling of implied smile functions: a generalized SVI model," Review of Derivatives Research, Springer, vol. 16(1), pages 53-77, April.
    18. Itamar Drechsler & Amir Yaron, 2011. "What's Vol Got to Do with It," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 1-45.
    19. Bliss, Robert R. & Panigirtzoglou, Nikolaos, 2002. "Testing the stability of implied probability density functions," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 381-422, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maxim Ulrich & Lukas Zimmer & Constantin Merbecks, 2023. "Implied volatility surfaces: a comprehensive analysis using half a billion option prices," Review of Derivatives Research, Springer, vol. 26(2), pages 135-169, October.
    2. Giovanni Campisi & Silvia Muzzioli, 2021. "Designing volatility indices for Austria, Finland and Spain," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 35(3), pages 369-455, September.
    3. Wolfgang Schadner & Joshua Traut, 2022. "Estimating Forward-Looking Stock Correlations from Risk Factors," Mathematics, MDPI, vol. 10(10), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    2. Maxim Ulrich & Lukas Zimmer & Constantin Merbecks, 2023. "Implied volatility surfaces: a comprehensive analysis using half a billion option prices," Review of Derivatives Research, Springer, vol. 26(2), pages 135-169, October.
    3. Pascal François & Rémi Galarneau‐Vincent & Geneviève Gauthier & Frédéric Godin, 2022. "Venturing into uncharted territory: An extensible implied volatility surface model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1912-1940, October.
    4. Geert Bekaert & Eric Engstrom & Andrey Ermolov, 2023. "The Variance Risk Premium in Equilibrium Models," Review of Finance, European Finance Association, vol. 27(6), pages 1977-2014.
    5. Horatio Cuesdeanu & Jens Carsten Jackwerth, 2018. "The pricing kernel puzzle: survey and outlook," Annals of Finance, Springer, vol. 14(3), pages 289-329, August.
    6. Yabei Zhu & Xingguo Luo & Qi Xu, 2023. "Industry variance risk premium, cross‐industry correlation, and expected returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(1), pages 3-32, January.
    7. Boswijk, H. Peter & Laeven, Roger J.A. & Vladimirov, Evgenii, 2024. "Estimating option pricing models using a characteristic function-based linear state space representation," Journal of Econometrics, Elsevier, vol. 244(1).
    8. Hardeep Singh Mundi, 2023. "Risk neutral variances to compute expected returns using data from S&P BSE 100 firms—a replication study," Management Review Quarterly, Springer, vol. 73(1), pages 215-230, February.
    9. DeMiguel, Victor & Plyakha, Yuliya & Uppal, Raman & Vilkov, Grigory, 2013. "Improving Portfolio Selection Using Option-Implied Volatility and Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(6), pages 1813-1845, December.
    10. Manuel Ammann & Alexander Feser, 2019. "Robust Estimation of Risk-Neutral Moments," Working Papers on Finance 1902, University of St. Gallen, School of Finance.
    11. Shackleton, Mark B. & Taylor, Stephen J. & Yu, Peng, 2010. "A multi-horizon comparison of density forecasts for the S&P 500 using index returns and option prices," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2678-2693, November.
    12. Manuel Ammann & Alexander Feser, 2019. "Robust estimation of risk‐neutral moments," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(9), pages 1137-1166, September.
    13. Liu, Xiaoquan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2007. "Closed-form transformations from risk-neutral to real-world distributions," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1501-1520, May.
    14. Geert Bekaert & Eric C. Engstrom & Nancy R. Xu, 2022. "The Time Variation in Risk Appetite and Uncertainty," Management Science, INFORMS, vol. 68(6), pages 3975-4004, June.
    15. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    16. Ian W. R. Martin & Christian Wagner, 2019. "What Is the Expected Return on a Stock?," Journal of Finance, American Finance Association, vol. 74(4), pages 1887-1929, August.
    17. Salazar Celis, Oliver & Liang, Lingzhi & Lemmens, Damiaan & Tempère, Jacques & Cuyt, Annie, 2015. "Determining and benchmarking risk neutral distributions implied from option prices," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 372-387.
    18. Erik Vogt, 2014. "Option-implied term structures," Staff Reports 706, Federal Reserve Bank of New York.
    19. Peter Christoffersen & Mathieu Fournier & Kris Jacobs, 2018. "The Factor Structure in Equity Options," The Review of Financial Studies, Society for Financial Studies, vol. 31(2), pages 595-637.
    20. Hollstein, Fabian & Wese Simen, Chardin, 2020. "Variance risk: A bird’s eye view," Journal of Econometrics, Elsevier, vol. 215(2), pages 517-535.

    More about this item

    Keywords

    Option-implied; Risk-neutral variance; Risk-neutral density; Tail risk; Option standardization; Interpolation;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:revdev:v:23:y:2020:i:3:d:10.1007_s11147-020-09166-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.