IDEAS home Printed from https://ideas.repec.org/a/kap/revdev/v19y2016i3d10.1007_s11147-016-9119-x.html
   My bibliography  Save this article

Stochastic covariance and dimension reduction in the pricing of basket options

Author

Listed:
  • Marcos Escobar

    (Ryerson University)

  • Daniel Krause

    (Technische Universität München)

  • Rudi Zagst

    (Technische Universität München)

Abstract

This paper presents a tailor-made method for dimension reduction aimed at approximating the price of basket options in the context of stochastic volatility and stochastic correlation. The methodology is built on a modification to the Principal Component Stochastic Volatility (PCSV) model, a stochastic covariance model that accounts for most stylized facts in prices. The method to reduce dimension is first derived theoretically. Afterwards the results are applied to a multivariate lognormal context as a special case of the PCSV model. Finally empirical results for the application of the method to the general PCSV model are illustrated.

Suggested Citation

  • Marcos Escobar & Daniel Krause & Rudi Zagst, 2016. "Stochastic covariance and dimension reduction in the pricing of basket options," Review of Derivatives Research, Springer, vol. 19(3), pages 165-200, October.
  • Handle: RePEc:kap:revdev:v:19:y:2016:i:3:d:10.1007_s11147-016-9119-x
    DOI: 10.1007/s11147-016-9119-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11147-016-9119-x
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11147-016-9119-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. JosE Da Fonseca & Martino Grasselli & Claudio Tebaldi, 2008. "A multifactor volatility Heston model," Quantitative Finance, Taylor & Francis Journals, vol. 8(6), pages 591-604.
    2. José Da Fonseca & Martino Grasselli & Florian Ielpo, 2011. "Hedging (Co)Variance Risk With Variance Swaps," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 899-943.
    3. Marcos Escobar & Pablo Olivares, 2013. "Pricing of mountain range derivatives under a principal component stochastic volatility model," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 29(1), pages 31-44, January.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. C. Gourieroux, 2006. "Continuous Time Wishart Process for Stochastic Risk," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 177-217.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Gnoatto & Martino Grasselli, 2011. "The explicit Laplace transform for the Wishart process," Papers 1107.2748, arXiv.org, revised Aug 2013.
    2. Manabu Asai & Michael McAleer, 2017. "A fractionally integrated Wishart stochastic volatility model," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 42-59, March.
    3. Takashi Kato & Jun Sekine & Kenichi Yoshikawa, 2013. "Order Estimates for the Exact Lugannani-Rice Expansion," Papers 1310.3347, arXiv.org, revised Jun 2014.
    4. Marcos Escobar & Christoph Gschnaidtner, 2018. "A multivariate stochastic volatility model with applications in the foreign exchange market," Review of Derivatives Research, Springer, vol. 21(1), pages 1-43, April.
    5. Nicole Branger & Matthias Muck & Stefan Weisheit, 2019. "Correlation risk and international portfolio choice," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 128-146, January.
    6. Branger, Nicole & Herold, Michael & Muck, Matthias, 2021. "International stochastic discount factors and covariance risk," Journal of Banking & Finance, Elsevier, vol. 123(C).
    7. Kwai S. Leung & Hon Y. Ng & Hoi Y. Wong, 2014. "Stochastic Skew in the Interest Rate Cap Market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(12), pages 1146-1169, December.
    8. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    9. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    10. Gaetano Bua & Daniele Marazzina, 2021. "On the application of Wishart process to the pricing of equity derivatives: the multi-asset case," Computational Management Science, Springer, vol. 18(2), pages 149-176, June.
    11. H. Bertholon & A. Monfort & F. Pegoraro, 2008. "Econometric Asset Pricing Modelling," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 407-458, Fall.
    12. Paul M. N. Feehan, 2012. "Maximum principles for boundary-degenerate second-order linear elliptic differential operators," Papers 1204.6613, arXiv.org, revised Sep 2013.
    13. Yanhong Zhong & Guohe Deng, 2019. "Geometric Asian Options Pricing under the Double Heston Stochastic Volatility Model with Stochastic Interest Rate," Complexity, Hindawi, vol. 2019, pages 1-13, January.
    14. Alessandro Gnoatto, 2012. "The Wishart Short Rate Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(08), pages 1-24.
    15. Mehrdoust, Farshid & Noorani, Idin & Hamdi, Abdelouahed, 2023. "Two-factor Heston model equipped with regime-switching: American option pricing and model calibration by Levenberg–Marquardt optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 660-678.
    16. Feunou Bruno & Tafolong Ernest, 2015. "Fourier inversion formulas for multiple-asset option pricing," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(5), pages 531-559, December.
    17. Zhang, Sumei & Gao, Xiong, 2019. "An asymptotic expansion method for geometric Asian options pricing under the double Heston model," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 1-9.
    18. Da Fonseca, José & Gnoatto, Alessandro & Grasselli, Martino, 2013. "A flexible matrix Libor model with smiles," Journal of Economic Dynamics and Control, Elsevier, vol. 37(4), pages 774-793.
    19. repec:uts:finphd:41 is not listed on IDEAS
    20. Chiu, Mei Choi & Wong, Hoi Ying, 2014. "Mean–variance asset–liability management with asset correlation risk and insurance liabilities," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 300-310.
    21. Escobar, Marcos & Ferrando, Sebastian & Rubtsov, Alexey, 2016. "Portfolio choice with stochastic interest rates and learning about stock return predictability," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 347-370.

    More about this item

    Keywords

    Principal components; Basket options; Stochastic covariance;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:revdev:v:19:y:2016:i:3:d:10.1007_s11147-016-9119-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.