IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v7y2007i1p63-76.html
   My bibliography  Save this article

Incorporating Waiting Time in Competitive Location Models

Author

Listed:
  • Francisco Silva
  • Daniel Serra

Abstract

In this paper we propose a metaheuristic to solve a new version of the Maximum Capture Problem. In the original MCP, market capture is obtained by lower traveling distances or lower traveling time, in this new version not only the traveling time but also the waiting time will affect the market share. This problem is hard to solve using standard optimization techniques. Metaheuristics are shown to offer accurate results within acceptable computing times. Copyright Springer Science+Business Media, LLC 2007

Suggested Citation

  • Francisco Silva & Daniel Serra, 2007. "Incorporating Waiting Time in Competitive Location Models," Networks and Spatial Economics, Springer, vol. 7(1), pages 63-76, March.
  • Handle: RePEc:kap:netspa:v:7:y:2007:i:1:p:63-76
    DOI: 10.1007/s11067-006-9006-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11067-006-9006-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-006-9006-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hakimi, S. Louis, 1983. "On locating new facilities in a competitive environment," European Journal of Operational Research, Elsevier, vol. 12(1), pages 29-35, January.
    2. Kohlberg, Elon, 1983. "Equilibrium store locations when consumers minimize travel time plus waiting time," Economics Letters, Elsevier, vol. 11(3), pages 211-216.
    3. D Serra & S Ratick & C ReVelle, 1996. "The Maximum Capture Problem with Uncertainty," Environment and Planning B, , vol. 23(1), pages 49-59, February.
    4. Plastria, Frank, 2001. "Static competitive facility location: An overview of optimisation approaches," European Journal of Operational Research, Elsevier, vol. 129(3), pages 461-470, March.
    5. Vladimir Marianov & Daniel Serra, 1994. "Probabilistic maximal covering location models for congested systems," Economics Working Papers 70, Department of Economics and Business, Universitat Pompeu Fabra.
    6. Daniel Serra & Charles Revelle, 1992. "The PQ-Median problem: Location and districting of hierarchical facilities. Part I," Economics Working Papers 12, Department of Economics and Business, Universitat Pompeu Fabra.
    7. Daniel Serra & Charles Revelle & Ken Rosing, 1999. "Surviving in a competitive spatial market: The threshold capture model," Economics Working Papers 359, Department of Economics and Business, Universitat Pompeu Fabra.
    8. Rosing, K. E. & ReVelle, C. S., 1997. "Heuristic concentration: Two stage solution construction," European Journal of Operational Research, Elsevier, vol. 97(1), pages 75-86, February.
    9. Daniel Serra & Charles Revelle, 1993. "Market capture by two competitors: The pre-emptive location problem," Economics Working Papers 39, Department of Economics and Business, Universitat Pompeu Fabra.
    10. Daniel Serra & Charles Revelle, 1994. "Competitive location in discrete space," Economics Working Papers 96, Department of Economics and Business, Universitat Pompeu Fabra.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Escuín & Carlos Millán & Emilio Larrodé, 2012. "Modelization of Time-Dependent Urban Freight Problems by Using a Multiple Number of Distribution Centers," Networks and Spatial Economics, Springer, vol. 12(3), pages 321-336, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco Silva & Daniel Serra, 2008. "Incorporating waiting time in competitive location models: Formulations and heuristics," Economics Working Papers 1091, Department of Economics and Business, Universitat Pompeu Fabra.
    2. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.
    3. Shiode, Shogo & Drezner, Zvi, 2003. "A competitive facility location problem on a tree network with stochastic weights," European Journal of Operational Research, Elsevier, vol. 149(1), pages 47-52, August.
    4. Diego Ruiz-Hernández & Javier Elizalde & David Delgado-Gómez, 2017. "Cournot–Stackelberg games in competitive delocation," Annals of Operations Research, Springer, vol. 256(1), pages 149-170, September.
    5. Daniel Serra & Rosa Colomé, 2000. "Supermarket key attributes and location decisions: A comparative study between British and Spanish consumers," Economics Working Papers 469, Department of Economics and Business, Universitat Pompeu Fabra.
    6. Vladimir Marianov & H. A. Eiselt, 2016. "On agglomeration in competitive location models," Annals of Operations Research, Springer, vol. 246(1), pages 31-55, November.
    7. Haase, Knut & Hoppe, Mirko, 2008. "Standortplanung unter Wettbewerb - Teil 1: Grundlagen," Discussion Papers 2/2008, Technische Universität Dresden, "Friedrich List" Faculty of Transport and Traffic Sciences, Institute of Transport and Economics.
    8. Rosa Colomé & Helena Lourenço & Daniel Serra, 2003. "A New Chance-Constrained Maximum Capture Location Problem," Annals of Operations Research, Springer, vol. 122(1), pages 121-139, September.
    9. Drezner, Zvi & Eiselt, H.A., 2024. "Competitive location models: A review," European Journal of Operational Research, Elsevier, vol. 316(1), pages 5-18.
    10. Gunhak Lee & Morton E. O'Kelly, 2009. "Exploring Locational Equilibria In A Competitive Broadband Access Market: Theoretical Modeling Approach," Journal of Regional Science, Wiley Blackwell, vol. 49(5), pages 953-975, December.
    11. Kress, Dominik & Pesch, Erwin, 2012. "Sequential competitive location on networks," European Journal of Operational Research, Elsevier, vol. 217(3), pages 483-499.
    12. Tammy Drezner, 2009. "Location of retail facilities under conditions of uncertainty," Annals of Operations Research, Springer, vol. 167(1), pages 107-120, March.
    13. Marianov, Vladimir & Rí­os, Miguel & Icaza, Manuel José, 2008. "Facility location for market capture when users rank facilities by shorter travel and waiting times," European Journal of Operational Research, Elsevier, vol. 191(1), pages 32-44, November.
    14. Alan Murray, 2010. "Advances in location modeling: GIS linkages and contributions," Journal of Geographical Systems, Springer, vol. 12(3), pages 335-354, September.
    15. Blas Pelegrín & Rafael Suárez-Vega & Saúl Cano, 2012. "Isodistant points in competitive network facility location," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 639-660, October.
    16. Eiselt, H. A. & Laporte, Gilbert, 1997. "Sequential location problems," European Journal of Operational Research, Elsevier, vol. 96(2), pages 217-231, January.
    17. Xiang Li & Tianyu Zhang & Liang Wang & Hongguang Ma & Xiande Zhao, 2022. "A minimax regret model for the leader–follower facility location problem," Annals of Operations Research, Springer, vol. 309(2), pages 861-882, February.
    18. Marianov, Vladimir & Serra, Daniel, 2001. "Hierarchical location-allocation models for congested systems," European Journal of Operational Research, Elsevier, vol. 135(1), pages 195-208, November.
    19. Rafael Blanquero & Emilio Carrizosa & Amaya Nogales-Gómez & Frank Plastria, 2014. "Single-facility huff location problems on networks," Annals of Operations Research, Springer, vol. 222(1), pages 175-195, November.
    20. Gentile, José & Alves Pessoa, Artur & Poss, Michael & Costa Roboredo, Marcos, 2018. "Integer programming formulations for three sequential discrete competitive location problems with foresight," European Journal of Operational Research, Elsevier, vol. 265(3), pages 872-881.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:7:y:2007:i:1:p:63-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.