IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v122y2003i1p121-13910.1023-a1026194423072.html
   My bibliography  Save this article

A New Chance-Constrained Maximum Capture Location Problem

Author

Listed:
  • Rosa Colomé
  • Helena Lourenço
  • Daniel Serra

Abstract

The paper presents a new model based on the basic Maximum Capture model, MAXCAP. The new Chance-Constrained Maximum Capture model introduces a stochastic threshold constraint, which recognises the fact that a facility can be open only if a minimum level of demand is captured. A metaheuristic based on Max-Min Ant System and Tabu Search procedure is presented to solve the model. This is the first time that the Max-Min Ant system is adapted to solve a location problem. Computational experience and an application to 55-node network are also presented. Copyright Kluwer Academic Publishers 2003

Suggested Citation

  • Rosa Colomé & Helena Lourenço & Daniel Serra, 2003. "A New Chance-Constrained Maximum Capture Location Problem," Annals of Operations Research, Springer, vol. 122(1), pages 121-139, September.
  • Handle: RePEc:spr:annopr:v:122:y:2003:i:1:p:121-139:10.1023/a:1026194423072
    DOI: 10.1023/A:1026194423072
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1026194423072
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1026194423072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marianov, Vladimir & Serra, Daniel & ReVelle, Charles, 1999. "Location of hubs in a competitive environment," European Journal of Operational Research, Elsevier, vol. 114(2), pages 363-371, April.
    2. Daniel Serra & Vladimir Marianov, 1996. "The P-median problem in a changing network: The case of Barcelona," Economics Working Papers 180, Department of Economics and Business, Universitat Pompeu Fabra.
    3. Daniel Serra & Charles Revelle & Ken Rosing, 1999. "Surviving in a competitive spatial market: The threshold capture model," Economics Working Papers 359, Department of Economics and Business, Universitat Pompeu Fabra.
    4. Daniel Serra & Charles Revelle, 1997. "Competitive location and pricing on networks," Economics Working Papers 219, Department of Economics and Business, Universitat Pompeu Fabra.
    5. Daniel Serra & Charles Revelle, 1993. "Market capture by two competitors: The pre-emptive location problem," Economics Working Papers 39, Department of Economics and Business, Universitat Pompeu Fabra.
    6. Rolland, Erik & Schilling, David A. & Current, John R., 1997. "An efficient tabu search procedure for the p-Median Problem," European Journal of Operational Research, Elsevier, vol. 96(2), pages 329-342, January.
    7. Michel Gendreau & Alain Hertz & Gilbert Laporte, 1994. "A Tabu Search Heuristic for the Vehicle Routing Problem," Management Science, INFORMS, vol. 40(10), pages 1276-1290, October.
    8. D Serra & S Ratick & C ReVelle, 1996. "The Maximum Capture Problem with Uncertainty," Environment and Planning B, , vol. 23(1), pages 49-59, February.
    9. Brian J.L. Berry & William L. Garrison, 1958. "Recent Developments Of Central Place Theory," Papers in Regional Science, Wiley Blackwell, vol. 4(1), pages 107-120, January.
    10. Daniel Serra & Rosa Colomé, 2000. "Supermarket key attributes and location decisions: A comparative study between British and Spanish consumers," Economics Working Papers 469, Department of Economics and Business, Universitat Pompeu Fabra.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diego Ruiz-Hernández & Javier Elizalde & David Delgado-Gómez, 2017. "Cournot–Stackelberg games in competitive delocation," Annals of Operations Research, Springer, vol. 256(1), pages 149-170, September.
    2. Benjamin Spaulding & Robert Cromley, 2007. "Integrating the maximum capture problem into a GIS framework," Journal of Geographical Systems, Springer, vol. 9(3), pages 267-288, September.
    3. Bilsel, R. Ufuk & Ravindran, A., 2011. "A multiobjective chance constrained programming model for supplier selection under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1284-1300, September.
    4. David Kik & Matthias G. Wichmann & Thomas S. Spengler, 2023. "Small- or Medium-Sized Enterprise Uses Operations Research to Select and Develop its Headquarters Location," Interfaces, INFORMS, vol. 53(4), pages 312-331, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diego Ruiz-Hernández & Javier Elizalde & David Delgado-Gómez, 2017. "Cournot–Stackelberg games in competitive delocation," Annals of Operations Research, Springer, vol. 256(1), pages 149-170, September.
    2. Francisco Silva & Daniel Serra, 2007. "Incorporating Waiting Time in Competitive Location Models," Networks and Spatial Economics, Springer, vol. 7(1), pages 63-76, March.
    3. Daniel Serra, 2003. "Location of multiple server common service centers or public facilities for minimizing general congestion and travel cost functions," Economics Working Papers 658, Department of Economics and Business, Universitat Pompeu Fabra.
    4. Francisco Silva & Daniel Serra, 2008. "Incorporating waiting time in competitive location models: Formulations and heuristics," Economics Working Papers 1091, Department of Economics and Business, Universitat Pompeu Fabra.
    5. Daniel Serra & Rosa Colomé, 2000. "Supermarket key attributes and location decisions: A comparative study between British and Spanish consumers," Economics Working Papers 469, Department of Economics and Business, Universitat Pompeu Fabra.
    6. Küçükaydin, Hande & Aras, Necati & Kuban AltInel, I., 2011. "Competitive facility location problem with attractiveness adjustment of the follower: A bilevel programming model and its solution," European Journal of Operational Research, Elsevier, vol. 208(3), pages 206-220, February.
    7. Rosing, K. E. & ReVelle, C. S. & Schilling, D. A., 1999. "A gamma heuristic for the p-median problem," European Journal of Operational Research, Elsevier, vol. 117(3), pages 522-532, September.
    8. Daniel Serra & Charles Revelle, 1997. "Competitive location and pricing on networks," Economics Working Papers 219, Department of Economics and Business, Universitat Pompeu Fabra.
    9. Shiode, Shogo & Drezner, Zvi, 2003. "A competitive facility location problem on a tree network with stochastic weights," European Journal of Operational Research, Elsevier, vol. 149(1), pages 47-52, August.
    10. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.
    11. Hua, Guowei & Cheng, T.C.E. & Wang, Shouyang, 2011. "The maximum capture per unit cost location problem," International Journal of Production Economics, Elsevier, vol. 131(2), pages 568-574, June.
    12. Benjamin Spaulding & Robert Cromley, 2007. "Integrating the maximum capture problem into a GIS framework," Journal of Geographical Systems, Springer, vol. 9(3), pages 267-288, September.
    13. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    14. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    15. Rafael Blanquero & Emilio Carrizosa & Amaya Nogales-Gómez & Frank Plastria, 2014. "Single-facility huff location problems on networks," Annals of Operations Research, Springer, vol. 222(1), pages 175-195, November.
    16. Nair, D.J. & Grzybowska, H. & Fu, Y. & Dixit, V.V., 2018. "Scheduling and routing models for food rescue and delivery operations," Socio-Economic Planning Sciences, Elsevier, vol. 63(C), pages 18-32.
    17. César Rego, 1998. "A Subpath Ejection Method for the Vehicle Routing Problem," Management Science, INFORMS, vol. 44(10), pages 1447-1459, October.
    18. P. P. Em, 2018. "A Big City as an Independent Central Place System, a Case Study of Moscow," Regional Research of Russia, Springer, vol. 8(2), pages 151-157, April.
    19. Tino Henke & M. Grazia Speranza & Gerhard Wäscher, 2014. "The Multi-Compartment Vehicle Routing Problem with Flexible Compartment Sizes," FEMM Working Papers 140006, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    20. Gang Chen & Mark S. Daskin & Zuo‐Jun Max Shen & Stanislav Uryasev, 2006. "The α‐reliable mean‐excess regret model for stochastic facility location modeling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(7), pages 617-626, October.

    More about this item

    Keywords

    stochastic location; capture models;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • J80 - Labor and Demographic Economics - - Labor Standards - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:122:y:2003:i:1:p:121-139:10.1023/a:1026194423072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.