IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v21y2021i1d10.1007_s11067-020-09505-6.html
   My bibliography  Save this article

Spatial Aggregation Issues in Traffic Assignment Models

Author

Listed:
  • Ouassim Manout

    (ENTPE, LAET
    Polytechnique Montreal)

  • Patrick Bonnel

    (ENTPE, LAET)

  • François Pacull

    (Architecture and Performance)

Abstract

Most transport models rely on a discrete description of space, and are, therefore, subject to spatial aggregation bias. Spatial aggregation induces the use of centroid connectors and the omission of intrazonal trips in traffic assignment. This practice is shown to bias main traffic assignment outcomes, especially in spatially coarse models. To address these modeling errors, the literature suggests some solutions but no clear-cut conclusion on the contribution of these solutions is available. In the current research, we undergo a detailed investigation of the contribution of some of these modeling solutions in order to provide useful and practical recommendations to academics and policy makers. Different assignment strategies that are deemed to mitigate the impacts of spatial aggregation in traffic assignment are explored in different case studies. Findings from this research outline that demand-side assignment strategies outperform supply-side methods in addressing the spatial aggregation problem. The results also suggest that the inclusion of intrazonal demand in traffic assignment is not sufficient to overcome aggregation biases. The definition of connectors is also of importance.

Suggested Citation

  • Ouassim Manout & Patrick Bonnel & François Pacull, 2021. "Spatial Aggregation Issues in Traffic Assignment Models," Networks and Spatial Economics, Springer, vol. 21(1), pages 1-29, March.
  • Handle: RePEc:kap:netspa:v:21:y:2021:i:1:d:10.1007_s11067-020-09505-6
    DOI: 10.1007/s11067-020-09505-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-020-09505-6
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-020-09505-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Skamris, Mette K. & Flyvbjerg, Bent, 1997. "Inaccuracy of traffic forecasts and cost estimates on large transport projects," Transport Policy, Elsevier, vol. 4(3), pages 141-146, July.
    2. Bar-Gera, Hillel & Hellman, Fredrik & Patriksson, Michael, 2013. "Computational precision of traffic equilibria sensitivities in automatic network design and road pricing," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 485-500.
    3. Abdulaal, Mustafa & LeBlanc, Larry J., 1979. "Continuous equilibrium network design models," Transportation Research Part B: Methodological, Elsevier, vol. 13(1), pages 19-32, March.
    4. Ouassim Manout & Patrick Bonnel, 2019. "The impact of ignoring intrazonal trips in assignment models: a stochastic approach," Transportation, Springer, vol. 46(6), pages 2397-2417, December.
    5. Stephen Marshall & Jorge Gil & Karl Kropf & Martin Tomko & Lucas Figueiredo, 2018. "Street Network Studies: from Networks to Models and their Representations," Networks and Spatial Economics, Springer, vol. 18(3), pages 735-749, September.
    6. Patrick Bonnel, 2004. "Prévoir la demande de transport," Post-Print halshs-00077292, HAL.
    7. Terry L. Friesz & Hsun-Jung Cho & Nihal J. Mehta & Roger L. Tobin & G. Anandalingam, 1992. "A Simulated Annealing Approach to the Network Design Problem with Variational Inequality Constraints," Transportation Science, INFORMS, vol. 26(1), pages 18-26, February.
    8. Heinz Spiess, 1990. "Technical Note—Conical Volume-Delay Functions," Transportation Science, INFORMS, vol. 24(2), pages 153-158, May.
    9. Filippo Simini & Marta C. González & Amos Maritan & Albert-László Barabási, 2012. "A universal model for mobility and migration patterns," Nature, Nature, vol. 484(7392), pages 96-100, April.
    10. David Boyce, 2007. "Forecasting Travel on Congested Urban Transportation Networks: Review and Prospects for Network Equilibrium Models," Networks and Spatial Economics, Springer, vol. 7(2), pages 99-128, June.
    11. Luathep, Paramet & Sumalee, Agachai & Lam, William H.K. & Li, Zhi-Chun & Lo, Hong K., 2011. "Global optimization method for mixed transportation network design problem: A mixed-integer linear programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 808-827, June.
    12. Wang, Shuaian & Meng, Qiang & Yang, Hai, 2013. "Global optimization methods for the discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 42-60.
    13. Meng, Q. & Yang, H. & Bell, M. G. H., 2001. "An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 35(1), pages 83-105, January.
    14. (Sean) Qian, Zhen & Zhang, H.M., 2012. "On centroid connectors in static traffic assignment: Their effects on flow patterns and how to optimize their selections," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1489-1503.
    15. Daganzo, Carlos F., 1980. "An equilibrium algorithm for the spatial aggregation problem of traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 14(3), pages 221-228, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Haoxiang & Wang, David Z.W., 2015. "Global optimization method for network design problem with stochastic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 20-39.
    2. Diana P. Moreno-Palacio & Carlos A. Gonzalez-Calderon & John Jairo Posada-Henao & Hector Lopez-Ospina & Jhan Kevin Gil-Marin, 2022. "Entropy-Based Transit Tour Synthesis Using Fuzzy Logic," Sustainability, MDPI, vol. 14(21), pages 1-25, November.
    3. Tan, Zhijia & Yang, Hai & Tan, Wei & Li, Zhichun, 2016. "Pareto-improving transportation network design and ownership regimes," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 292-309.
    4. Hua Wang & Xiaoning Zhang, 2017. "Game theoretical transportation network design among multiple regions," Annals of Operations Research, Springer, vol. 249(1), pages 97-117, February.
    5. Li, Changmin & Yang, Hai & Zhu, Daoli & Meng, Qiang, 2012. "A global optimization method for continuous network design problems," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1144-1158.
    6. Wang, Shuaian & Meng, Qiang & Yang, Hai, 2013. "Global optimization methods for the discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 42-60.
    7. Bar-Gera, Hillel & Hellman, Fredrik & Patriksson, Michael, 2013. "Computational precision of traffic equilibria sensitivities in automatic network design and road pricing," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 485-500.
    8. Hosseininasab, Seyyed-Mohammadreza & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza & Karimi, Hadi, 2018. "A multi-objective integrated model for selecting, scheduling, and budgeting road construction projects," European Journal of Operational Research, Elsevier, vol. 271(1), pages 262-277.
    9. Manout, Ouassim & Bonnel, Patrick & Bouzouina, Louafi, 2018. "Transit accessibility: A new definition of transit connectors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 88-100.
    10. Luathep, Paramet & Sumalee, Agachai & Lam, William H.K. & Li, Zhi-Chun & Lo, Hong K., 2011. "Global optimization method for mixed transportation network design problem: A mixed-integer linear programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 808-827, June.
    11. Fontaine, Pirmin & Minner, Stefan, 2014. "Benders Decomposition for Discrete–Continuous Linear Bilevel Problems with application to traffic network design," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 163-172.
    12. Enrique Fernández L., J. & de Cea Ch., Joaquin & Malbran, R. Henry, 2008. "Demand responsive urban public transport system design: Methodology and application," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(7), pages 951-972, August.
    13. Meng, Qiang & Yang, Hai, 2002. "Benefit distribution and equity in road network design," Transportation Research Part B: Methodological, Elsevier, vol. 36(1), pages 19-35, January.
    14. Ukkusuri, Satish V. & Patil, Gopal, 2009. "Multi-period transportation network design under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 625-642, July.
    15. Hamid Farvaresh & Mohammad Sepehri, 2013. "A Branch and Bound Algorithm for Bi-level Discrete Network Design Problem," Networks and Spatial Economics, Springer, vol. 13(1), pages 67-106, March.
    16. Patriksson, Michael, 2008. "On the applicability and solution of bilevel optimization models in transportation science: A study on the existence, stability and computation of optimal solutions to stochastic mathematical programs," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 843-860, December.
    17. Ouassim Manout & Patrick Bonnel, 2019. "The impact of ignoring intrazonal trips in assignment models: a stochastic approach," Transportation, Springer, vol. 46(6), pages 2397-2417, December.
    18. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    19. Di, Zhen & Yang, Lixing, 2020. "Reversible lane network design for maximizing the coupling measure between demand structure and network structure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    20. Di, Zhen & Yang, Lixing & Qi, Jianguo & Gao, Ziyou, 2018. "Transportation network design for maximizing flow-based accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 209-238.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:21:y:2021:i:1:d:10.1007_s11067-020-09505-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.