IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v17y2017i3d10.1007_s11067-017-9341-6.html
   My bibliography  Save this article

Modeling Vehicle Miles Traveled on Local Roads Using Classification Roadway Spatial Structure

Author

Listed:
  • Xiubin B. Wang

    (Texas A&M University)

  • Xiaowei Cao

    (Texas A&M University)

  • Kai Yin

    (HomeAway, Inc.)

  • Teresa M. Adams

    (University of Wisconsin – Madison)

Abstract

This paper models the relationship between vehicle miles traveled (VMT) on local and collector roads with an objective to predict local road VMT by using collector road VMT. Through a continuous approximation method typically used for vehicle routing, it first analytically reveals this relationship mainly as a function of roadway density ratios between multiple roadway classifications. This structural relationship suggests regression equations using density ratios or logarithmic values of them as the explanatory variables. The use of regression equations enables to account for varying spatial distributions of roadways and demand through parameter calibration. The proposed regression equations are proved good fits through computer simulation using distinct community road network topologies. In addition, practical data from Hennepin County of Minnesota, U.S.A. that encompasses Minneapolis indicates that our developed regression equations can work well.

Suggested Citation

  • Xiubin B. Wang & Xiaowei Cao & Kai Yin & Teresa M. Adams, 2017. "Modeling Vehicle Miles Traveled on Local Roads Using Classification Roadway Spatial Structure," Networks and Spatial Economics, Springer, vol. 17(3), pages 713-735, September.
  • Handle: RePEc:kap:netspa:v:17:y:2017:i:3:d:10.1007_s11067-017-9341-6
    DOI: 10.1007/s11067-017-9341-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-017-9341-6
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-017-9341-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pavithra Parthasarathi & Hartwig Hochmair & David Levinson, 2012. "Network Structure and Spatial Separation," Environment and Planning B, , vol. 39(1), pages 137-154, February.
    2. Pavithra Parthasarathi & Hartwig Hochmair & David Levinson, 2015. "Street network structure and household activity spaces," Urban Studies, Urban Studies Journal Limited, vol. 52(6), pages 1090-1112, May.
    3. Rentziou, Aikaterini & Gkritza, Konstantina & Souleyrette, Reginald R., 2012. "VMT, energy consumption, and GHG emissions forecasting for passenger transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 487-500.
    4. Ming Zhong & Brody L. Hanson, 2009. "GIS-based travel demand modeling for estimating traffic on low-class roads," Transportation Planning and Technology, Taylor & Francis Journals, vol. 32(5), pages 423-439, August.
    5. Daganzo, Carlos F., 1984. "The length of tours in zones of different shapes," Transportation Research Part B: Methodological, Elsevier, vol. 18(2), pages 135-145, April.
    6. Wirasinghe, S.C. & Kattan, Lina, 2016. "Long-term planning for ring-radial urban rail transit networksAuthor-Name: Saidi, Saeid," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 128-146.
    7. C. E. M. Pearce, 1974. "Locating Concentric Ring Roads in a City," Transportation Science, INFORMS, vol. 8(2), pages 142-168, May.
    8. Alan J. Miller, 1967. "On Spiral Road Networks," Transportation Science, INFORMS, vol. 1(2), pages 109-125, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgios Magkonis & Karen Jackson, 2019. "Identifying Networks in Social Media: The case of #Grexit," Networks and Spatial Economics, Springer, vol. 19(1), pages 319-330, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hochmair, Hartwig H. & Bardin, Eric & Ahmouda, Ahmed, 2019. "Estimating bicycle trip volume for Miami-Dade county from Strava tracking data," Journal of Transport Geography, Elsevier, vol. 75(C), pages 58-69.
    2. Boeing, Geoff, 2017. "Methods and Measures for Analyzing Complex Street Networks and Urban Form," SocArXiv 93h82, Center for Open Science.
    3. Langevin, André & Mbaraga, Pontien & Campbell, James F., 1996. "Continuous approximation models in freight distribution: An overview," Transportation Research Part B: Methodological, Elsevier, vol. 30(3), pages 163-188, June.
    4. Parthasarathi, Pavithra & Levinson, David, 2018. "Network structure and the journey to work: An intra-metropolitan analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 292-304.
    5. Haughton, Michael A., 1998. "The performance of route modification and demand stabilization strategies in stochastic vehicle routing," Transportation Research Part B: Methodological, Elsevier, vol. 32(8), pages 551-566, November.
    6. Reham Alhindawi & Yousef Abu Nahleh & Arun Kumar & Nirajan Shiwakoti, 2020. "Projection of Greenhouse Gas Emissions for the Road Transport Sector Based on Multivariate Regression and the Double Exponential Smoothing Model," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    7. Mengying Cui & David Levinson, 2018. "Accessibility analysis of risk severity," Transportation, Springer, vol. 45(4), pages 1029-1050, July.
    8. Liwei Zeng & Sunil Chopra & Karen Smilowitz, 2019. "The Covering Path Problem on a Grid," Transportation Science, INFORMS, vol. 53(6), pages 1656-1672, November.
    9. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou & Ma, Changxi, 2019. "Stochastic bus schedule coordination considering demand assignment and rerouting of passengers," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 275-303.
    10. Janson, Michael & Levinson, David, 2014. "HOT or not," Research in Transportation Economics, Elsevier, vol. 44(C), pages 21-32.
    11. Kim, Myungseob (Edward) & Schonfeld, Paul, 2015. "Maximizing net benefits for conventional and flexible bus services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 116-133.
    12. Duan, Zhengyu & Zhao, Haoran & Li, Zhenming, 2023. "Non-linear effects of built environment and socio-demographics on activity space," Journal of Transport Geography, Elsevier, vol. 111(C).
    13. Qi, Mingyao & Lin, Wei-Hua & Li, Nan & Miao, Lixin, 2012. "A spatiotemporal partitioning approach for large-scale vehicle routing problems with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 248-257.
    14. Dujuan Yang & Harry Timmermans & Aloys Borgers, 2016. "The prevalence of context-dependent adjustment of activity-travel patterns in energy conservation strategies: results from a mixture-amount stated adaptation experiment," Transportation, Springer, vol. 43(1), pages 79-100, January.
    15. Marlin W. Ulmer & Alan Erera & Martin Savelsbergh, 2022. "Dynamic service area sizing in urban delivery," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 763-793, September.
    16. Noelia Caceres & Luis M. Romero & Francisco J. Morales & Antonio Reyes & Francisco G. Benitez, 2018. "Estimating traffic volumes on intercity road locations using roadway attributes, socioeconomic features and other work-related activity characteristics," Transportation, Springer, vol. 45(5), pages 1449-1473, September.
    17. Kim, Myungseob (Edward) & Schonfeld, Paul, 2014. "Integration of conventional and flexible bus services with timed transfers," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 76-97.
    18. Goetzke, Frank & Vance, Colin, 2018. "Is gasoline price elasticity in the United States increasing? Evidence from the 2009 and 2017 national household travel surveys," Ruhr Economic Papers 765, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    19. Daganzo, Carlos F. & Ouyang, Yanfeng & Yang, Haolin, 2020. "Analysis of ride-sharing with service time and detour guarantees," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 130-150.
    20. Jiang, Zhoutong & Lei, Chao & Ouyang, Yanfeng, 2020. "Optimal investment and management of shared bikes in a competitive market," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 143-155.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:17:y:2017:i:3:d:10.1007_s11067-017-9341-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.