IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v39y2013i2p191-205.html
   My bibliography  Save this article

Accounting for heterogeneous technologies in the banking industry: a time-varying stochastic frontier model with threshold effects

Author

Listed:
  • Pavlos Almanidis

Abstract

This paper investigates the existence of heterogeneous technologies in the US commercial banking industry through the nondynamic panel threshold effects estimation technique proposed by Hansen (Econometrica 64:413–430, 1999 , Econometrica 68:575–603, 2000a ). We employ the total assets as a threshold variable, which is typically considered as a proxy for bank’s size in the banking literature. We modify the threshold effects model to allow for time-varying effects, wherein these are modeled by a time polynomial of degree two as in Cornwell et al. (J Econom 46:185–200, 1990 ) model. Threshold effects estimation allows us to sort banks into discrete groups based on their size in a structural and consistent manner. We determine seven such distinct technology-groups within which banks are allowed to share the same technology parameters. We provide estimates of individual and group efficiency scores, as well as of those of returns to scale and measures of technological change for each group. The presence of the threshold(s) is tested via bootstrap procedure outlined in Hansen (Econometrica 64:413–430, 1999 ) and the relationship between bank size and efficiency ratios is investigated. Copyright Springer Science+Business Media, LLC 2013

Suggested Citation

  • Pavlos Almanidis, 2013. "Accounting for heterogeneous technologies in the banking industry: a time-varying stochastic frontier model with threshold effects," Journal of Productivity Analysis, Springer, vol. 39(2), pages 191-205, April.
  • Handle: RePEc:kap:jproda:v:39:y:2013:i:2:p:191-205
    DOI: 10.1007/s11123-012-0306-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11123-012-0306-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11123-012-0306-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berger, Allen N. & Mester, Loretta J., 2003. "Explaining the dramatic changes in performance of US banks: technological change, deregulation, and dynamic changes in competition," Journal of Financial Intermediation, Elsevier, vol. 12(1), pages 57-95, January.
    2. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    3. C. J. O'Donnell & W. E. Griffiths, 2006. "Estimating State-Contingent Production Frontiers," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(1), pages 249-266.
    4. Hansen, Bruce E., 1999. "Threshold effects in non-dynamic panels: Estimation, testing, and inference," Journal of Econometrics, Elsevier, vol. 93(2), pages 345-368, December.
    5. Adams, Robert M & Berger, Allen N & Sickles, Robin C, 1999. "Semiparametric Approaches to Stochastic Panel Frontiers with Applications in the Banking Industry," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(3), pages 349-358, July.
    6. Berger, Allen N. & Mester, Loretta J., 1997. "Inside the black box: What explains differences in the efficiencies of financial institutions?," Journal of Banking & Finance, Elsevier, vol. 21(7), pages 895-947, July.
    7. Hausman, Jerry A & Taylor, William E, 1981. "Panel Data and Unobservable Individual Effects," Econometrica, Econometric Society, vol. 49(6), pages 1377-1398, November.
    8. Pitt, Mark M. & Lee, Lung-Fei, 1981. "The measurement and sources of technical inefficiency in the Indonesian weaving industry," Journal of Development Economics, Elsevier, vol. 9(1), pages 43-64, August.
    9. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-374, October.
    10. Swamy, P A V B & Tavlas, George S, 1995. "Random Coefficient Models: Theory and Applications," Journal of Economic Surveys, Wiley Blackwell, vol. 9(2), pages 165-196, June.
    11. George E. Battese & Greg S. Corra, 1977. "Estimation Of A Production Frontier Model: With Application To The Pastoral Zone Of Eastern Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 21(3), pages 169-179, December.
    12. Dan Wang & Subal Kumbhakar, 2009. "Strategic groups and heterogeneous technologies: an application to the US banking industry," Macroeconomics and Finance in Emerging Market Economies, Taylor & Francis Journals, vol. 2(1), pages 31-57.
    13. Subal Kumbhakar & Efthymios Tsionas, 2008. "Scale and efficiency measurement using a semiparametric stochastic frontier model: evidence from the U.S. commercial banks," Empirical Economics, Springer, vol. 34(3), pages 585-602, June.
    14. Kaparakis, Emmanuel I & Miller, Stephen M & Noulas, Athanasios G, 1994. "Short-Run Cost Inefficiency of Commercial Banks: A Flexible Stochastic Frontier Approach," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 26(4), pages 875-893, November.
    15. Kneip, Alois & Sickles, Robin C. & Song, Wonho, 2012. "A New Panel Data Treatment For Heterogeneity In Time Trends," Econometric Theory, Cambridge University Press, vol. 28(3), pages 590-628, June.
    16. Zvi Griliches, 1992. "Output Measurement in the Service Sectors," NBER Books, National Bureau of Economic Research, Inc, number gril92-1.
    17. Wheelock, David C. & Wilson, Paul W., 2001. "New evidence on returns to scale and product mix among U.S. commercial banks," Journal of Monetary Economics, Elsevier, vol. 47(3), pages 653-674, June.
    18. Efthymios G. Tsionas, 2002. "Stochastic frontier models with random coefficients," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(2), pages 127-147.
    19. David C. Wheelock & Paul W. Wilson, 2000. "Why do Banks Disappear? The Determinants of U.S. Bank Failures and Acquisitions," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 127-138, February.
    20. McAllister, Patrick H. & McManus, Douglas, 1993. "Resolving the scale efficiency puzzle in banking," Journal of Banking & Finance, Elsevier, vol. 17(2-3), pages 389-405, April.
    21. Hulusi Inanoglu & Mahmoud A. El-Gamal, 2005. "Inefficiency and heterogeneity in Turkish banking: 1990-2000," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(5), pages 641-664.
    22. Luis Orea & Subal C. Kumbhakar, 2004. "Efficiency measurement using a latent class stochastic frontier model," Empirical Economics, Springer, vol. 29(1), pages 169-183, January.
    23. Efthymios G. Tsionas & Subal C. Kumbhakar, 2004. "Markov switching stochastic frontier model," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 398-425, December.
    24. Bai, Jushan, 1997. "Estimating Multiple Breaks One at a Time," Econometric Theory, Cambridge University Press, vol. 13(3), pages 315-352, June.
    25. Jeffrey Brown & Dennis Glennon, 2000. "Cost structures of banks grouped by strategic conduct," Applied Economics, Taylor & Francis Journals, vol. 32(12), pages 1591-1605.
    26. Battese, George E. & Corra, Greg S., 1977. "Estimation Of A Production Frontier Model: With Application To The Pastoral Zone Of Eastern Australia," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 21(3), pages 1-11, December.
    27. Emili Tortosa-Ausina, 2002. "Cost Efficiency and Product Mix Clusters across the Spanish Banking Industry," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 20(2), pages 163-181, March.
    28. Kumbhakar, Subal C., 1990. "Production frontiers, panel data, and time-varying technical inefficiency," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 201-211.
    29. Kumbhakar, Subal C. & Park, Byeong U. & Simar, Leopold & Tsionas, Efthymios G., 2007. "Nonparametric stochastic frontiers: A local maximum likelihood approach," Journal of Econometrics, Elsevier, vol. 137(1), pages 1-27, March.
    30. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    31. Ho-chuan Huang, 2004. "Estimation of Technical Inefficiencies with Heterogeneous Technologies," Journal of Productivity Analysis, Springer, vol. 21(3), pages 277-296, May.
    32. Allen N. Berger & David B. Humphrey, 1992. "Measurement and Efficiency Issues in Commercial Banking," NBER Chapters, in: Output Measurement in the Service Sectors, pages 245-300, National Bureau of Economic Research, Inc.
    33. Cornwell, Christopher & Schmidt, Peter & Sickles, Robin C., 1990. "Production frontiers with cross-sectional and time-series variation in efficiency levels," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 185-200.
    34. Amel, Dean F & Rhoades, Stephen A, 1988. "Strategic Groups in Banking," The Review of Economics and Statistics, MIT Press, vol. 70(4), pages 685-689, November.
    35. Baltensperger, Ernst, 1980. "Alternative approaches to the theory of the banking firm," Journal of Monetary Economics, Elsevier, vol. 6(1), pages 1-37, January.
    36. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    37. Sealey, Calvin W, Jr & Lindley, James T, 1977. "Inputs, Outputs, and a Theory of Production and Cost at Depository Financial Institutions," Journal of Finance, American Finance Association, vol. 32(4), pages 1251-1266, September.
    38. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jingfang & Malikov, Emir, 2022. "Off-balance sheet activities and scope economies in U.S. banking," Journal of Banking & Finance, Elsevier, vol. 141(C).
    2. Pavlos Almanidis & Giannis Karagiannis & Robin Sickles, 2015. "Semi-nonparametric spline modifications to the Cornwell–Schmidt–Sickles estimator: an analysis of US banking productivity," Empirical Economics, Springer, vol. 48(1), pages 169-191, February.
    3. Mohamed Chaffai & Patrick Plane, 2017. "Firm Productivity, Technology and Export Status, What Can We Learn from Egyptian Industries?," Working Papers 1134, Economic Research Forum, revised 09 Jun 2017.
    4. Pavlos Almanidis & Mustafa U. Karakaplan & Levent Kutlu, 2019. "A dynamic stochastic frontier model with threshold effects: U.S. bank size and efficiency," Journal of Productivity Analysis, Springer, vol. 52(1), pages 69-84, December.
    5. Mohammad I. Al Masud & Levent Kutlu, 2018. "US Bank Efficiency and FED Activity," Economics Bulletin, AccessEcon, vol. 38(4), pages 2047-2059.
    6. Elizabeth Ahikiriza & Jef Meensel & Xavier Gellynck & Ludwig Lauwers, 2021. "Heterogeneity in frontier analysis: does it matter for benchmarking farms?," Journal of Productivity Analysis, Springer, vol. 56(2), pages 69-84, December.
    7. Du, Kerui & Li, Jianglong, 2019. "Towards a green world: How do green technology innovations affect total-factor carbon productivity," Energy Policy, Elsevier, vol. 131(C), pages 240-250.
    8. Chaffai, Mohamed & Coccorese, Paolo, 2019. "How far away is the MENA banking system? Efficiency comparisons with international banks," The North American Journal of Economics and Finance, Elsevier, vol. 49(C), pages 378-395.
    9. Vanesa Llorens & Alfredo Martín-Oliver & Vicente Salas-Fumas, 2020. "Productivity, competition and bank restructuring process," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 11(3), pages 313-340, September.
    10. Song, Donghui & Chen, Tong Zhang Po & Chen, Fengbo, 2021. "Heterogeneous Effects of Off-farm Employment on Production Choices of Rice Farmers in China," 2021 ASAE 10th International Conference (Virtual), January 11-13, Beijing, China 329415, Asian Society of Agricultural Economists (ASAE).
    11. Hakan Güneş & Dilem Yıldırım, 2016. "Estimating Cost Efficiency of Turkish Commercial Banks under Unobserved Heterogeneity with Stochastic Frontier Models," ERC Working Papers 1603, ERC - Economic Research Center, Middle East Technical University, revised Mar 2016.
    12. Kutlu, Levent & Tran, Kien C. & Tsionas, Mike G., 2019. "A time-varying true individual effects model with endogenous regressors," Journal of Econometrics, Elsevier, vol. 211(2), pages 539-559.
    13. Kutlu, Levent & McCarthy, Patrick, 2016. "US airport ownership, efficiency, and heterogeneity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 117-132.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavlos Almanidis & Mustafa U. Karakaplan & Levent Kutlu, 2019. "A dynamic stochastic frontier model with threshold effects: U.S. bank size and efficiency," Journal of Productivity Analysis, Springer, vol. 52(1), pages 69-84, December.
    2. Pavlos Almanidis & Robin C. Sickles, 2016. "Banking Crises, Early Warning Models, and Efficiency," International Series in Operations Research & Management Science, in: Juan Aparicio & C. A. Knox Lovell & Jesus T. Pastor (ed.), Advances in Efficiency and Productivity, chapter 0, pages 331-364, Springer.
    3. Sickles, Robin C. & Hao, Jiaqi & Shang, Chenjun, 2015. "Panel Data and Productivity Measurement," Working Papers 15-018, Rice University, Department of Economics.
    4. Vaneet Bhatia & Sankarshan Basu & Subrata Kumar Mitra & Pradyumna Dash, 2018. "A review of bank efficiency and productivity," OPSEARCH, Springer;Operational Research Society of India, vol. 55(3), pages 557-600, November.
    5. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    6. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    7. Guohua Feng & Apostolos Serletis, 2009. "Efficiency and productivity of the US banking industry, 1998-2005: evidence from the Fourier cost function satisfying global regularity conditions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 105-138.
    8. Hakan Güneş & Dilem Yıldırım, 2016. "Estimating Cost Efficiency of Turkish Commercial Banks under Unobserved Heterogeneity with Stochastic Frontier Models," ERC Working Papers 1603, ERC - Economic Research Center, Middle East Technical University, revised Mar 2016.
    9. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    10. Yélou, Clément & Larue, Bruno & Tran, Kien C., 2010. "Threshold effects in panel data stochastic frontier models of dairy production in Canada," Economic Modelling, Elsevier, vol. 27(3), pages 641-647, May.
    11. Mike Tsionas & Marwan Izzeldin & Arne Henningsen & Evaggelos Paravalos, 2022. "Addressing endogeneity when estimating stochastic ray production frontiers: a Bayesian approach," Empirical Economics, Springer, vol. 62(3), pages 1345-1363, March.
    12. Robin C. Sickles & Jiaqi Hao & Chenjun Shang, 2014. "Panel data and productivity measurement: an analysis of Asian productivity trends," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 12(3), pages 211-231, August.
    13. Shasha Liu & Robin Sickles, 2021. "The agency problem revisited: a structural analysis of managerial productivity and CEO compensation in large US commercial banks," Empirical Economics, Springer, vol. 60(1), pages 391-418, January.
    14. Manlagñit, Maria Chelo V., 2011. "Cost efficiency, determinants, and risk preferences in banking: A case of stochastic frontier analysis in the Philippines," Journal of Asian Economics, Elsevier, vol. 22(1), pages 23-35, February.
    15. Blazek, David & Sickles, Robin C., 2010. "The impact of knowledge accumulation and geographical spillovers on productivity and efficiency: The case of U. S. shipbuilding during WWII," Economic Modelling, Elsevier, vol. 27(6), pages 1484-1497, November.
    16. Pavlos Almanidis & Giannis Karagiannis & Robin Sickles, 2015. "Semi-nonparametric spline modifications to the Cornwell–Schmidt–Sickles estimator: an analysis of US banking productivity," Empirical Economics, Springer, vol. 48(1), pages 169-191, February.
    17. Goddard, John & Molyneux, Philip & Williams, Jonathan, 2014. "Dealing with cross-firm heterogeneity in bank efficiency estimates: Some evidence from Latin America," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 130-142.
    18. Sickles, Robin C., 2005. "Panel estimators and the identification of firm-specific efficiency levels in parametric, semiparametric and nonparametric settings," Journal of Econometrics, Elsevier, vol. 126(2), pages 305-334, June.
    19. Williams, Jonathan, 2004. "Determining management behaviour in European banking," Journal of Banking & Finance, Elsevier, vol. 28(10), pages 2427-2460, October.
    20. Massimo Del Gatto & Adriana Di Liberto & Carmelo Petraglia, 2011. "Measuring Productivity," Journal of Economic Surveys, Wiley Blackwell, vol. 25(5), pages 952-1008, December.

    More about this item

    Keywords

    Stochastic frontier; Threshold effects; Panel data; Banks; C13; C23; D24; G21;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:39:y:2013:i:2:p:191-205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.