IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v29y2008i3p235-247.html
   My bibliography  Save this article

Investment and dynamic DEA

Author

Listed:
  • Pierre Ouellette
  • Li Yan

Abstract

A dynamic version of Data Envelopment Analysis (DEA) is developed in the present paper. Our model introduces investment in traditional DEA and imposes intertemporal cost minimization. Adding an intertemporal adjustment constraint into the cost minimization problem, we derive the relation between the DEA variables of the cost function and those of the primary production frontiers’ coefficients. The augmented DEA model can be solved using standard linear programming. This dynamic framework enables computing the production frontiers, measuring the productive efficiencies and evaluating the potential economies all in the presence of adjustment costs.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Pierre Ouellette & Li Yan, 2008. "Investment and dynamic DEA," Journal of Productivity Analysis, Springer, vol. 29(3), pages 235-247, June.
  • Handle: RePEc:kap:jproda:v:29:y:2008:i:3:p:235-247
    DOI: 10.1007/s11123-007-0079-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11123-007-0079-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11123-007-0079-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Elvira Silva & Spiro E. Stefanou, 2007. "Dynamic Efficiency Measurement: Theory and Application," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(2), pages 398-419.
    2. Jiro Nemoto & Mika Goto, 2003. "Measurement of Dynamic Efficiency in Production: An Application of Data Envelopment Analysis to Japanese Electric Utilities," Journal of Productivity Analysis, Springer, vol. 19(2), pages 191-210, April.
    3. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    4. Elvira Silva & Spiro Stefanou, 2003. "Nonparametric Dynamic Production Analysis and the Theory of Cost," Journal of Productivity Analysis, Springer, vol. 19(1), pages 5-32, January.
    5. F R Førsund & L Hjalmarsson, 2004. "Calculating scale elasticity in DEA models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(10), pages 1023-1038, October.
    6. Nemoto, Jiro & Goto, Mika, 1999. "Dynamic data envelopment analysis: modeling intertemporal behavior of a firm in the presence of productive inefficiencies," Economics Letters, Elsevier, vol. 64(1), pages 51-56, July.
    7. Pierre Lasserre & Pierre Ouellette, 1999. "Dynamic Factor Demands and Technology Measurement under Arbitrary Expectations," Journal of Productivity Analysis, Springer, vol. 11(3), pages 219-241, June.
    8. Rajiv D. Banker & Richard C. Morey, 1986. "Efficiency Analysis for Exogenously Fixed Inputs and Outputs," Operations Research, INFORMS, vol. 34(4), pages 513-521, August.
    9. Pierre Ouellette & Stéphane Vigeant, 2000. "A General Procedure to Recover the Marginal Products of a Cost Minimizing Firm," Journal of Productivity Analysis, Springer, vol. 14(2), pages 143-162, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kao, Chiang, 2013. "Dynamic data envelopment analysis: A relational analysis," European Journal of Operational Research, Elsevier, vol. 227(2), pages 325-330.
    2. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    3. Pointon, Charlotte & Matthews, Kent, 2016. "Dynamic efficiency in the English and Welsh water and sewerage industry," Omega, Elsevier, vol. 58(C), pages 86-96.
    4. Pierre Ouellette & Valérie Vierstraete, 2010. "Malmquist indexes with quasi-fixed inputs: an application to school districts in Québec," Annals of Operations Research, Springer, vol. 173(1), pages 57-76, January.
    5. Sahoo, Biresh K & Khoveyni, Mohammad & Eslami, Robabeh & Chaudhury, Pradipta, 2016. "Returns to scale and most productive scale size in DEA with negative data," European Journal of Operational Research, Elsevier, vol. 255(2), pages 545-558.
    6. Cherchye, Laurens & De Rock, Bram & Kerstens, Pieter Jan, 2018. "Production with storable and durable inputs: Nonparametric analysis of intertemporal efficiency," European Journal of Operational Research, Elsevier, vol. 270(2), pages 498-513.
    7. Jean Joseph Minviel & Timo Sipiläinen, 2018. "Dynamic stochastic analysis of the farm subsidy-efficiency link: evidence from France," Journal of Productivity Analysis, Springer, vol. 50(1), pages 41-54, October.
    8. Zhu, Liyun & Schneider, Kevin & Oude Lansink, Alfons, 2023. "Economic, environmental, and social inefficiency assessment of Dutch dairy farms based on the dynamic by-production model," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1134-1145.
    9. Guo, Xiaoying & Lu, Ching-Cheng & Lee, Jen-Hui & Chiu, Yung-Ho, 2017. "Applying the dynamic DEA model to evaluate the energy efficiency of OECD countries and China," Energy, Elsevier, vol. 134(C), pages 392-399.
    10. Ching-Cheng Lu & Liang-Chun Lu, 2019. "Evaluating the energy efficiency of European Union countries: The dynamic data envelopment analysis," Energy & Environment, , vol. 30(1), pages 27-43, February.
    11. Frederic Ang & Pieter Jan Kerstens, 2023. "Robust nonparametric analysis of dynamic profits, prices and productivity: An application to French meat-processing firms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(2), pages 771-809.
    12. Huettel, Silke & Narayana, Rashmi & Odening, Martin, 2011. "Measuring dynamic efficiency under uncertainty," Structural Change in Agriculture/Strukturwandel im Agrarsektor (SiAg) Working Papers 129062, Humboldt University Berlin, Department of Agricultural Economics.
    13. Frederic Ang & Alfons Oude Lansink, 2018. "Decomposing dynamic profit inefficiency of Belgian dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(1), pages 81-99.
    14. Silva, Elvira & Magalhães, Manuela, 2023. "Environmental efficiency, irreversibility and the shadow price of emissions," European Journal of Operational Research, Elsevier, vol. 306(2), pages 955-967.
    15. Silva, Elvira & Lansink, Alfons Oude & Stefanou, Spiro E., 2015. "The adjustment-cost model of the firm: Duality and productive efficiency," International Journal of Production Economics, Elsevier, vol. 168(C), pages 245-256.
    16. Pointon, Charlotte & Matthews, Kent, 2016. "Reprint of: Dynamic efficiency in the English and Welsh water and sewerage industry," Omega, Elsevier, vol. 60(C), pages 98-108.
    17. Elvira Silva & Alfons Oude Lansink, 2013. "Dynamic Efficiency Measurement: A Directional Distance Function Approach," CEF.UP Working Papers 1307, Universidade do Porto, Faculdade de Economia do Porto.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aparicio, Juan & Kapelko, Magdalena, 2019. "Accounting for slacks to measure dynamic inefficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 278(2), pages 463-471.
    2. Silva, Elvira & Lansink, Alfons Oude & Stefanou, Spiro E., 2015. "The adjustment-cost model of the firm: Duality and productive efficiency," International Journal of Production Economics, Elsevier, vol. 168(C), pages 245-256.
    3. Li, Linda & Miller, David & Schmidt, Charles P., 2016. "Optimizing inventory׳s contribution to profitability in a regulated utility: The Averch–Johnson effect," International Journal of Production Economics, Elsevier, vol. 175(C), pages 132-141.
    4. Hampf, Benjamin, 2017. "Rational inefficiency, adjustment costs and sequential technologies," European Journal of Operational Research, Elsevier, vol. 263(3), pages 1095-1108.
    5. S. Ghobadi & G. R. Jahanshahloo & F. Hosseinzadeh Lotfi & M. Rostamy-Malkhalifeh, 2018. "Efficiency Measure Under Inter-Temporal Dependence," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(02), pages 657-675, March.
    6. Pierre Ouellette & Valérie Vierstraete, 2010. "Malmquist indexes with quasi-fixed inputs: an application to school districts in Québec," Annals of Operations Research, Springer, vol. 173(1), pages 57-76, January.
    7. Pointon, Charlotte & Matthews, Kent, 2016. "Dynamic efficiency in the English and Welsh water and sewerage industry," Omega, Elsevier, vol. 58(C), pages 86-96.
    8. Saeideh Fallah-Fini & Konstantinos Triantis & Andrew Johnson, 2014. "Reviewing the literature on non-parametric dynamic efficiency measurement: state-of-the-art," Journal of Productivity Analysis, Springer, vol. 41(1), pages 51-67, February.
    9. Frederic Ang & Pieter Jan Kerstens, 2016. "To Mix or Specialise? A Coordination Productivity Indicator for English and Welsh farms," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(3), pages 779-798, September.
    10. Sebastian Nick & Heike Wetzel, 2016. "The hidden cost of investment: the impact of adjustment costs on firm performance measurement and regulation," Journal of Regulatory Economics, Springer, vol. 49(1), pages 33-55, February.
    11. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    12. Tomas Baležentis & Alfons Oude Lansink, 2020. "Measuring dynamic biased technical change in Lithuanian cereal farms," Agribusiness, John Wiley & Sons, Ltd., vol. 36(2), pages 208-225, April.
    13. Tsionas, Mike G. & Malikov, Emir & Kumbhakar, Subal C., 2020. "Endogenous dynamic efficiency in the intertemporal optimization models of firm behavior," European Journal of Operational Research, Elsevier, vol. 284(1), pages 313-324.
    14. Kao, Chiang, 2013. "Dynamic data envelopment analysis: A relational analysis," European Journal of Operational Research, Elsevier, vol. 227(2), pages 325-330.
    15. Gardebroek, Cornelis & Oude Lansink, Alfons G.J.M., 2008. "Dynamic Microeconometric Approaches To Analysing Agricultural Policy," 107th Seminar, January 30-February 1, 2008, Sevilla, Spain 6592, European Association of Agricultural Economists.
    16. Magdalena Kapelko & Alfons Oude Lansink, 2018. "Managerial and program inefficiency for European meat manufacturing firms: A dynamic multidirectional inefficiency analysis approach," Journal of Productivity Analysis, Springer, vol. 49(1), pages 25-36, February.
    17. Chen, Yah-Wei & Huang, Tai-Hsin, 2009. "The LeChatelier principle in a DEA model," European Journal of Operational Research, Elsevier, vol. 197(1), pages 371-373, August.
    18. Elvira Silva & Alfons Oude Lansink, 2013. "Dynamic Efficiency Measurement: A Directional Distance Function Approach," CEF.UP Working Papers 1307, Universidade do Porto, Faculdade de Economia do Porto.
    19. Filadelfo Mateo & Tim Coelli & Chris O'Donnell, 2006. "Optimal Paths And Costs Of Adjustment In Dynamic DEA Models: With Application To Chilean Department Stores," Annals of Operations Research, Springer, vol. 145(1), pages 211-227, July.
    20. Pointon, Charlotte & Matthews, Kent, 2016. "Reprint of: Dynamic efficiency in the English and Welsh water and sewerage industry," Omega, Elsevier, vol. 60(C), pages 98-108.

    More about this item

    Keywords

    Adjustment cost; Data envelopment analysis; Efficiency; Multiple outputs/inputs; Quasi-fixed inputs; D24; L23;
    All these keywords.

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • L23 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - Organization of Production

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:29:y:2008:i:3:p:235-247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.