IDEAS home Printed from https://ideas.repec.org/h/spr/adspcp/978-3-319-30196-9_3.html
   My bibliography  Save this book chapter

Constrained Variants of the Gravity Model and Spatial Dependence: Model Specification and Estimation Issues

In: Spatial Econometric Interaction Modelling

Author

Listed:
  • Daniel A. Griffith

    (University of Texas at Dallas)

  • Manfred M. Fischer

    (Vienna University of Economics and Business)

Abstract

In this paper, we distinguish three constrained variants of the gravity model of spatial interaction: doubly constrained, production constrained and attraction constrained exponential gravity models. These model variants include origin and/or destination specific balancing factors that act as constraints to ensure that the estimated rows and columns of the flow data matrix sum to the observed row and column totals. Because flows are typically counts, the Poisson rather than the normal probability model specification furnishes the appropriate statistical distribution, and parameter estimation can be achieved via Poisson regression. This probability model specification motivates the use of origin and/or destination fixed effects or—under certain conditions—the use of origin and/or destination specific random effects for model estimation. The paper establishes theoretical connections between balancing factors, fixed effects represented by binary indicator variables, and random effects. The results pertaining to both the doubly and singly constrained cases of spatial interaction are illustrated with an empirical example, while accounting for spatial dependence between flows from locations neighbouring both the origins and destinations during estimation.

Suggested Citation

  • Daniel A. Griffith & Manfred M. Fischer, 2016. "Constrained Variants of the Gravity Model and Spatial Dependence: Model Specification and Estimation Issues," Advances in Spatial Science, in: Roberto Patuelli & Giuseppe Arbia (ed.), Spatial Econometric Interaction Modelling, chapter 0, pages 37-66, Springer.
  • Handle: RePEc:spr:adspcp:978-3-319-30196-9_3
    DOI: 10.1007/978-3-319-30196-9_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Manfred M. Fischer & Daniel A. Griffith, 2006. "Modeling Spatial Autocorrelation in Spatial Interaction Data: A Comparison of Spatial Econometric and Spatial Filtering Specifications," ERSA conference papers ersa06p10, European Regional Science Association.
    2. Yongwan Chun, 2008. "Modeling network autocorrelation within migration flows by eigenvector spatial filtering," Journal of Geographical Systems, Springer, vol. 10(4), pages 317-344, December.
    3. Manfred M. Fischer & Jinfeng Wang, 2011. "Spatial Data Analysis," SpringerBriefs in Regional Science, Springer, number 978-3-642-21720-3, July.
    4. Lambert, Dayton M. & Brown, Jason P. & Florax, Raymond J.G.M., 2010. "A two-step estimator for a spatial lag model of counts: Theory, small sample performance and an application," Regional Science and Urban Economics, Elsevier, vol. 40(4), pages 241-252, July.
    5. Cesario, Frank J., 1977. "A new interpretation of the "normalizing" or "balancing" factors of gravity-type spatial models," Socio-Economic Planning Sciences, Elsevier, vol. 11(3), pages 131-136.
    6. Manfred M. Fischer & Arthur Getis (ed.), 2010. "Handbook of Applied Spatial Analysis," Springer Books, Springer, number 978-3-642-03647-7, June.
    7. James P. LeSage & R. Kelley Pace, 2008. "Spatial Econometric Modeling Of Origin‐Destination Flows," Journal of Regional Science, Wiley Blackwell, vol. 48(5), pages 941-967, December.
    8. James P. LeSage & Manfred M. Fischer & Thomas Scherngell, 2007. "Knowledge spillovers across Europe: Evidence from a Poisson spatial interaction model with spatial effects," Papers in Regional Science, Wiley Blackwell, vol. 86(3), pages 393-421, August.
    9. Daniel Griffith, 2009. "Modeling spatial autocorrelation in spatial interaction data: empirical evidence from 2002 Germany journey-to-work flows," Journal of Geographical Systems, Springer, vol. 11(2), pages 117-140, June.
    10. J Ledent, 1985. "The Doubly Constrained Model of Spatial Interaction: A More General Formulation," Environment and Planning A, , vol. 17(2), pages 253-262, February.
    11. Bolduc, Denis & Laferriere, Richard & Santarossa, Gino, 1992. "Spatial autoregressive error components in travel flow models," Regional Science and Urban Economics, Elsevier, vol. 22(3), pages 371-385, September.
    12. A G Wilson, 1971. "A Family of Spatial Interaction Models, and Associated Developments," Environment and Planning A, , vol. 3(1), pages 1-32, March.
    13. Daniel A. Griffith, 2003. "Spatial Autocorrelation and Spatial Filtering," Advances in Spatial Science, Springer, number 978-3-540-24806-4.
    14. Daniel A. Griffith, 2009. "Spatial Autocorrelation in Spatial Interaction," Advances in Spatial Science, in: Aura Reggiani & Peter Nijkamp (ed.), Complexity and Spatial Networks, chapter 0, pages 221-237, Springer.
    15. repec:rre:publsh:v:37:y:2007:i:1:p:28-38 is not listed on IDEAS
    16. Daniel A. Griffith, 2000. "A linear regression solution to the spatial autocorrelation problem," Journal of Geographical Systems, Springer, vol. 2(2), pages 141-156, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Justyna Wilk, 2015. "Using symbolic data in gravity model of population migration to reduce modifiable areal unit problem (MAUP)," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(2), pages 243-264, June.
    2. Wilk Justyna, 2015. "Using Symbolic Data in Gravity Model of Population Migration to Reduce Modifiable Areal Unit Problem (MAUP)," Statistics in Transition New Series, Statistics Poland, vol. 16(2), pages 243-264, June.
    3. Daniel A. Griffith & Manfred M. Fischer & James LeSage, 2017. "The spatial autocorrelation problem in spatial interaction modelling: a comparison of two common solutions," Letters in Spatial and Resource Sciences, Springer, vol. 10(1), pages 75-86, March.
    4. S. Bacci & B. Bertaccini, 2021. "Assessment of the University Reputation Through the Analysis of the Student Mobility," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 363-388, August.
    5. M. Alonso & M. Beamonte & P. Gargallo & M. Salvador, 2014. "Labour and residential accessibility: a Bayesian analysis based on Poisson gravity models with spatial effects," Journal of Geographical Systems, Springer, vol. 16(4), pages 409-439, October.
    6. Paula Margaretic & Christine Thomas-Agnan & Romain Doucet, 2017. "Spatial dependence in (origin-destination) air passenger flows," Papers in Regional Science, Wiley Blackwell, vol. 96(2), pages 357-380, June.
    7. Christoph Hammer & Aurélien Fichet de Clairfontaine, 2016. "Trade Costs and Income in European Regions," Department of Economics Working Papers wuwp220, Vienna University of Economics and Business, Department of Economics.
    8. James Paul LeSage & Manfred M. Fischer, 2020. "Cross-sectional dependence model specifications in a static trade panel data setting," Journal of Geographical Systems, Springer, vol. 22(1), pages 5-46, January.
    9. Aurélien Fichet de Clairfontaine & Manfred Fischer & Rafael Lata & Manfred Paier, 2015. "Barriers to cross-region research and development collaborations in Europe: evidence from the fifth European Framework Programme," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 54(2), pages 577-590, March.
    10. Justyna Wilk, 2015. "Using Symbolic Data In Gravity Model Of Population Migration To Reduce Modifiable Areal Unit Problem (Maup)," Statistics in Transition New Series, Polish Statistical Association, vol. 16(2), pages 243-264, June.
    11. Persyn, Damiaan, 2021. "Migrants looking for opportunities - On destination size and spatial aggregation in the gravity equation for migration," MPRA Paper 111064, University Library of Munich, Germany.
    12. Oshan, Taylor M., 2022. "Spatial Interaction Modeling," OSF Preprints m3ah8, Center for Open Science.
    13. Oshan, Taylor M., 2020. "The spatial structure debate in spatial interaction modeling: 50 years on," OSF Preprints 42vxn, Center for Open Science.
    14. Chao Zhang & Si Chen & Chunyang Wang & Yi Zhao & Min Ao, 2022. "Population Flow and Epidemic Spread: Direct Impact and Spatial Spillover Effect," SAGE Open, , vol. 12(1), pages 21582440211, January.
    15. Elise Desjardins & Christopher D. Higgins & Darren M. Scott & Emma Apatu & Antonio Páez, 2022. "Correlates of bicycling trip flows in Hamilton, Ontario: fastest, quietest, or balanced routes?," Transportation, Springer, vol. 49(3), pages 867-895, June.
    16. Fischer, Manfred M. & LeSage, James P., 2018. "The role of socio-cultural factors in static trade panel models," Working Papers in Regional Science 2018/04, WU Vienna University of Economics and Business.
    17. Daisuke Murakami & Daniel Griffith, 2015. "Random effects specifications in eigenvector spatial filtering: a simulation study," Journal of Geographical Systems, Springer, vol. 17(4), pages 311-331, October.
    18. Yingxia Pu & Xinyi Zhao & Guangqing Chi & Jin Zhao & Fanhua Kong, 2019. "A spatial dynamic panel approach to modelling the space-time dynamics of interprovincial migration flows in China," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(31), pages 913-948.
    19. Moura, Ticiana Grecco Zanon & Chen, Zhangliang & Garcia-Alonso, Lorena, 2019. "Spatial interaction effects on inland distribution of maritime flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 1-10.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oshan, Taylor M., 2020. "The spatial structure debate in spatial interaction modeling: 50 years on," OSF Preprints 42vxn, Center for Open Science.
    2. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    3. Sellner, Richard & Fischer, Manfred M. & Koch, Matthias, 2010. "A spatial autoregressive Poisson gravity model," MPRA Paper 77551, University Library of Munich, Germany.
    4. Paula Margaretic & Christine Thomas-Agnan & Romain Doucet, 2017. "Spatial dependence in (origin-destination) air passenger flows," Papers in Regional Science, Wiley Blackwell, vol. 96(2), pages 357-380, June.
    5. Rodolfo Metulini & Roberto Patuelli & Daniel A. Griffith, 2018. "A Spatial-Filtering Zero-Inflated Approach to the Estimation of the Gravity Model of Trade," Econometrics, MDPI, vol. 6(1), pages 1-15, February.
    6. Daisuke Murakami & Daniel Griffith, 2015. "Random effects specifications in eigenvector spatial filtering: a simulation study," Journal of Geographical Systems, Springer, vol. 17(4), pages 311-331, October.
    7. Daniel A. Griffith & Manfred M. Fischer & James LeSage, 2017. "The spatial autocorrelation problem in spatial interaction modelling: a comparison of two common solutions," Letters in Spatial and Resource Sciences, Springer, vol. 10(1), pages 75-86, March.
    8. Daniele Fabbri & Silvana Robone, 2010. "The geography of hospital admission in a national health service with patient choice," Health Economics, John Wiley & Sons, Ltd., vol. 19(9), pages 1029-1047, September.
    9. Giuseppe Ricciardo Lamonica & Barbara Zagaglia, 2013. "The determinants of internal mobility in Italy, 1995-2006," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(16), pages 407-440.
    10. Manfred M. Fischer & Daniel A. Griffith, 2008. "Modeling Spatial Autocorrelation In Spatial Interaction Data: An Application To Patent Citation Data In The European Union," Journal of Regional Science, Wiley Blackwell, vol. 48(5), pages 969-989, December.
    11. Giuseppe Ricciardo Lamonica, 2018. "An analysis of methods for the treatment of autocorrelation in spatial interaction models," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 72(2), pages 2-9, April-Jun.
    12. Rafael Lata & Sidonia Proff & Thomas Brenner, 2018. "The influence of distance types on co-patenting and co-publishing in the USA and Europe over time," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 61(1), pages 49-71, July.
    13. Moura, Ticiana Grecco Zanon & Chen, Zhangliang & Garcia-Alonso, Lorena, 2019. "Spatial interaction effects on inland distribution of maritime flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 1-10.
    14. Lan Hu & Yongwan Chun & Daniel A. Griffith, 2020. "Uncovering a positive and negative spatial autocorrelation mixture pattern: a spatial analysis of breast cancer incidences in Broward County, Florida, 2000–2010," Journal of Geographical Systems, Springer, vol. 22(3), pages 291-308, July.
    15. James P. LeSage & Christine Thomas-Agnan, 2015. "Interpreting Spatial Econometric Origin-Destination Flow Models," Journal of Regional Science, Wiley Blackwell, vol. 55(2), pages 188-208, March.
    16. M. Alonso & M. Beamonte & P. Gargallo & M. Salvador, 2014. "Labour and residential accessibility: a Bayesian analysis based on Poisson gravity models with spatial effects," Journal of Geographical Systems, Springer, vol. 16(4), pages 409-439, October.
    17. Clément Gorin, 2016. "Patterns and determinants of inventors' mobility across European urban areas," Working Papers halshs-01313086, HAL.
    18. Yingxia Pu & Xinyi Zhao & Guangqing Chi & Jin Zhao & Fanhua Kong, 2019. "A spatial dynamic panel approach to modelling the space-time dynamics of interprovincial migration flows in China," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(31), pages 913-948.
    19. Yu, Danlin & Murakami, Daisuke & Zhang, Yaojun & Wu, Xiwei & Li, Ding & Wang, Xiaoxi & Li, Guangdong, 2020. "Investigating high-speed rail construction's support to county level regional development in China: An eigenvector based spatial filtering panel data analysis," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 21-37.
    20. Aurélien Fichet de Clairfontaine & Manfred Fischer & Rafael Lata & Manfred Paier, 2015. "Barriers to cross-region research and development collaborations in Europe: evidence from the fifth European Framework Programme," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 54(2), pages 577-590, March.

    More about this item

    Keywords

    Constrained gravity models; Count data; Patent citation flows; Poisson; Spatial dependence in origin-destination flows; Spatial econometrics; Spatial filtering;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • R15 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Econometric and Input-Output Models; Other Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:adspcp:978-3-319-30196-9_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.