IDEAS home Printed from https://ideas.repec.org/a/kap/jgeosy/v15y2013i3p233-247.html
   My bibliography  Save this article

Testing spatial autocorrelation in weighted networks: the modes permutation test

Author

Listed:
  • François Bavaud

Abstract

In a weighted spatial network, as specified by an exchange matrix, the variances of the spatial values are inversely proportional to the size of the regions. Spatial values are no more exchangeable under independence, thus weakening the rationale for ordinary permutation and bootstrap tests of spatial autocorrelation. We propose an alternative permutation test for spatial autocorrelation, based upon exchangeable spatial modes, constructed as linear orthogonal combinations of spatial values. The coefficients obtain as eigenvectors of the standardized exchange matrix appearing in spectral clustering and generalize to the weighted case the concept of spatial filtering for connectivity matrices. Also, two proposals aimed at transforming an accessibility matrix into an exchange matrix with a priori fixed margins are presented. Two examples (inter-regional migratory flows and binary adjacency networks) illustrate the formalism, rooted in the theory of spectral decomposition for reversible Markov chains. Copyright Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • François Bavaud, 2013. "Testing spatial autocorrelation in weighted networks: the modes permutation test," Journal of Geographical Systems, Springer, vol. 15(3), pages 233-247, July.
  • Handle: RePEc:kap:jgeosy:v:15:y:2013:i:3:p:233-247
    DOI: 10.1007/s10109-013-0179-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10109-013-0179-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10109-013-0179-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yongwan Chun, 2008. "Modeling network autocorrelation within migration flows by eigenvector spatial filtering," Journal of Geographical Systems, Springer, vol. 10(4), pages 317-344, December.
    2. Julian Besag & Peter J. Diggle, 1977. "Simple Monte Carlo Tests for Spatial Pattern," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 26(3), pages 327-333, November.
    3. M F Goodchild & T R Smith, 1980. "Intransitivity, the Spatial Interaction Model, and US Migration Streams," Environment and Planning A, , vol. 12(10), pages 1131-1144, October.
    4. Daniel A. Griffith, 2003. "Spatial Autocorrelation and Spatial Filtering," Advances in Spatial Science, Springer, number 978-3-540-24806-4.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bavaud, François, 2023. "Exact first moments of the RV coefficient by invariant orthogonal integration," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    2. Qing Luo & Daniel A. Griffith & Huayi Wu, 2019. "Spatial autocorrelation for massive spatial data: verification of efficiency and statistical power asymptotics," Journal of Geographical Systems, Springer, vol. 21(2), pages 237-269, June.
    3. F. Bavaud & M. Kordi & C. Kaiser, 2018. "Flow autocorrelation: a dyadic approach," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 61(1), pages 95-111, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel A. Griffith & Manfred M. Fischer, 2016. "Constrained Variants of the Gravity Model and Spatial Dependence: Model Specification and Estimation Issues," Advances in Spatial Science, in: Roberto Patuelli & Giuseppe Arbia (ed.), Spatial Econometric Interaction Modelling, chapter 0, pages 37-66, Springer.
    2. Qing Luo & Daniel A. Griffith & Huayi Wu, 2019. "Spatial autocorrelation for massive spatial data: verification of efficiency and statistical power asymptotics," Journal of Geographical Systems, Springer, vol. 21(2), pages 237-269, June.
    3. Dieter von Fintel & Eldridge Moses, 2017. "Migration and gender in South Africa: following bright lights and the fortunes of others?," Working Papers 09/2017, Stellenbosch University, Department of Economics, revised 2018.
    4. Rodolfo Metulini & Roberto Patuelli & Daniel A. Griffith, 2018. "A Spatial-Filtering Zero-Inflated Approach to the Estimation of the Gravity Model of Trade," Econometrics, MDPI, vol. 6(1), pages 1-15, February.
    5. Rafael Lata & Sidonia Proff & Thomas Brenner, 2018. "The influence of distance types on co-patenting and co-publishing in the USA and Europe over time," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 61(1), pages 49-71, July.
    6. Yongwan Chun & Daniel A. Griffith & Monghyeon Lee & Parmanand Sinha, 2016. "Eigenvector selection with stepwise regression techniques to construct eigenvector spatial filters," Journal of Geographical Systems, Springer, vol. 18(1), pages 67-85, January.
    7. Clément Gorin, 2016. "Patterns and determinants of inventors’ mobility across European urban areas," Working Papers 1615, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    8. Daniele Fabbri & Silvana Robone, 2010. "The geography of hospital admission in a national health service with patient choice," Health Economics, John Wiley & Sons, Ltd., vol. 19(9), pages 1029-1047, September.
    9. Giuseppe Ricciardo Lamonica & Barbara Zagaglia, 2013. "The determinants of internal mobility in Italy, 1995-2006," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(16), pages 407-440.
    10. Daisuke Murakami & Daniel Griffith, 2015. "Random effects specifications in eigenvector spatial filtering: a simulation study," Journal of Geographical Systems, Springer, vol. 17(4), pages 311-331, October.
    11. Jungmin Kim & Juyong Park & Wonjae Lee, 2018. "Why do people move? Enhancing human mobility prediction using local functions based on public records and SNS data," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-29, February.
    12. Lan Hu & Yongwan Chun & Daniel A. Griffith, 2020. "Uncovering a positive and negative spatial autocorrelation mixture pattern: a spatial analysis of breast cancer incidences in Broward County, Florida, 2000–2010," Journal of Geographical Systems, Springer, vol. 22(3), pages 291-308, July.
    13. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    14. Tse-Chuan Yang & Stephen A Matthews, 2015. "Death by Segregation: Does the Dimension of Racial Segregation Matter?," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-26, September.
    15. Giuliano Guerra & Roberto Patuelli, 2014. "The influence of role models on immigrant self-employment: a spatial analysis for Switzerland," International Journal of Manpower, Emerald Group Publishing Limited, vol. 35(1/2), pages 187-215, May.
    16. Reinhold Kosfeld & Christian Dreger & Hans-Friedrich Eckey, 2008. "On the stability of the German Beveridge curve: a spatial econometric perspective," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(4), pages 967-986, December.
    17. Hans-Friedrich Eckey & Reinhold Kosfeld & Matthias Türck, 2007. "Regionale Entwicklung mit und ohne räumliche Spillover-Effekte," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 27(1), pages 23-42, February.
    18. D’Aubigny Gérard, 2016. "A Statistical Toolbox For Mining And Modeling Spatial Data," Comparative Economic Research, Sciendo, vol. 19(5), pages 5-24, December.
    19. Mitze, Timo & Strotebeck, Falk, 2017. "Modeling interregional research collaborations in German biotechnology using industry directory data: A quantitative social network analysis," MPRA Paper 83392, University Library of Munich, Germany.
    20. Tamara Mata & Carlos Llano, 2013. "Social networks and trade of services: modelling interregional flows with spatial and network autocorrelation effects," Journal of Geographical Systems, Springer, vol. 15(3), pages 319-367, July.

    More about this item

    Keywords

    Bootstrap; Local variance; Markov and semi-Markov processes; Moran’s I ; Permutation test; Spatial autocorrelation; Spatial filtering; Weighted networks; C12; C15; C31;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jgeosy:v:15:y:2013:i:3:p:233-247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.