IDEAS home Printed from https://ideas.repec.org/a/gam/jgeogr/v3y2023i3p28-562d1226547.html
   My bibliography  Save this article

Understanding Spatial Autocorrelation: An Everyday Metaphor and Additional New Interpretations

Author

Listed:
  • Daniel A. Griffith

    (School of Economic, Political and Policy Sciences, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA)

Abstract

An enumeration of spatial autocorrelation’s (SA’s) polyvalent forms occurred nearly three decades ago. Attempts to conceive and disseminate a clearer explanation of it employ metaphors seeking to better relate SA to a student’s or spatial scientist’s personal knowledge databank. However, not one of these uses the jigsaw puzzle metaphor appearing in this paper, which exploits an analogy between concrete visual content organization and abstract map patterns of attributes. It not only makes SA easier to understand, which furnishes a useful pedagogic tool for teaching novices and others about it, but also discloses that many georeferenced data should contain a positive–negative SA mixture. Empirical examples corroborate this mixture’s existence, as well as the tendency for marked positive SA to characterize remotely sensed and moderate (net) positive SA to characterize socio-economic/demographic, georeferenced data.

Suggested Citation

  • Daniel A. Griffith, 2023. "Understanding Spatial Autocorrelation: An Everyday Metaphor and Additional New Interpretations," Geographies, MDPI, vol. 3(3), pages 1-20, August.
  • Handle: RePEc:gam:jgeogr:v:3:y:2023:i:3:p:28-562:d:1226547
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2673-7086/3/3/28/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2673-7086/3/3/28/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giuseppe Arbia, 2006. "Spatial Econometrics," Advances in Spatial Science, Springer, number 978-3-540-32305-1, december.
    2. Daniel P. McMillen, 2003. "Spatial Autocorrelation Or Model Misspecification?," International Regional Science Review, , vol. 26(2), pages 208-217, April.
    3. Daniel A. Griffith, 2020. "A Family of Correlated Observations: From Independent to Strongly Interrelated Ones," Stats, MDPI, vol. 3(3), pages 1-19, June.
    4. Daniel A. Griffith, 2003. "Spatial Autocorrelation and Spatial Filtering," Advances in Spatial Science, Springer, number 978-3-540-24806-4, december.
    5. Daniel A. Griffith & Yongwan Chun, 2016. "Evaluating Eigenvector Spatial Filter Corrections for Omitted Georeferenced Variables," Econometrics, MDPI, vol. 4(2), pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiong Duan & Bin Chen & Tianxiang Zhang & Yuqi Guan & Kun Zeng, 2024. "Habitat Quality Evolution and Multi-Scenario Simulation Based on Land Use Change in the Jialing River Basin," Sustainability, MDPI, vol. 16(16), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesus Mur & Ana Angulo, 2005. "A closer look at the Spatial Durbin Model," ERSA conference papers ersa05p392, European Regional Science Association.
    2. Daniel A. Griffith & Yongwan Chun, 2022. "Some useful details about the Moran coefficient, the Geary ratio, and the join count indices of spatial autocorrelation," Journal of Spatial Econometrics, Springer, vol. 3(1), pages 1-30, December.
    3. Rodolfo Metulini & Roberto Patuelli & Daniel A. Griffith, 2018. "A Spatial-Filtering Zero-Inflated Approach to the Estimation of the Gravity Model of Trade," Econometrics, MDPI, vol. 6(1), pages 1-15, February.
    4. Daniel A. Griffith & Yongwan Chun & Monghyeon Lee, 2020. "Deeper Spatial Statistical Insights into Small Geographic Area Data Uncertainty," IJERPH, MDPI, vol. 18(1), pages 1-16, December.
    5. Roger Bivand & Giovanni Millo & Gianfranco Piras, 2021. "A Review of Software for Spatial Econometrics in R," Mathematics, MDPI, vol. 9(11), pages 1-40, June.
    6. Daniel A. Griffith & Yongwan Chun, 2016. "Evaluating Eigenvector Spatial Filter Corrections for Omitted Georeferenced Variables," Econometrics, MDPI, vol. 4(2), pages 1-12, June.
    7. Vicente Rios Ibañez, 2014. "What drives regional unemployment convergence?," ERSA conference papers ersa14p924, European Regional Science Association.
    8. Tse-Chuan Yang & Stephen A Matthews, 2015. "Death by Segregation: Does the Dimension of Racial Segregation Matter?," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-26, September.
    9. Marco Helbich & Wolfgang Brunauer & Eric Vaz & Peter Nijkamp, 2014. "Spatial Heterogeneity in Hedonic House Price Models: The Case of Austria," Urban Studies, Urban Studies Journal Limited, vol. 51(2), pages 390-411, February.
    10. Reinhold Kosfeld & Christian Dreger & Hans-Friedrich Eckey, 2008. "On the stability of the German Beveridge curve: a spatial econometric perspective," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(4), pages 967-986, December.
    11. Tzu-Ling Chen & Hsueh-Sheng Chang, 2018. "The Effects of Zoning Regulations along Fault Zone Areas on Land Development and Property Values after the 921 Chi-Chi Earthquake in Taiwan," Sustainability, MDPI, vol. 10(4), pages 1-15, April.
    12. Daniel A. Griffith & Yongwan Chun & Jan Hauke, 2022. "A Moran eigenvector spatial filtering specification of entropy measures," Papers in Regional Science, Wiley Blackwell, vol. 101(1), pages 259-279, February.
    13. Daniel A. Griffith & Manfred M. Fischer, 2016. "Constrained Variants of the Gravity Model and Spatial Dependence: Model Specification and Estimation Issues," Advances in Spatial Science, in: Roberto Patuelli & Giuseppe Arbia (ed.), Spatial Econometric Interaction Modelling, chapter 0, pages 37-66, Springer.
    14. Giuliano Guerra & Roberto Patuelli, 2014. "The influence of role models on immigrant self-employment: a spatial analysis for Switzerland," International Journal of Manpower, Emerald Group Publishing Limited, vol. 35(1/2), pages 187-215, May.
    15. Roger Bivand, 2008. "Implementing Representations Of Space In Economic Geography," Journal of Regional Science, Wiley Blackwell, vol. 48(1), pages 1-27, February.
    16. Hans-Friedrich Eckey & Reinhold Kosfeld & Matthias Türck, 2007. "Regionale Entwicklung mit und ohne räumliche Spillover-Effekte," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 27(1), pages 23-42, February.
    17. D’Aubigny Gérard, 2016. "A Statistical Toolbox For Mining And Modeling Spatial Data," Comparative Economic Research, Sciendo, vol. 19(5), pages 5-24, December.
    18. Mitze, Timo & Strotebeck, Falk, 2017. "Modeling interregional research collaborations in German biotechnology using industry directory data: A quantitative social network analysis," MPRA Paper 83392, University Library of Munich, Germany.
    19. Qing Luo & Daniel A. Griffith & Huayi Wu, 2019. "Spatial autocorrelation for massive spatial data: verification of efficiency and statistical power asymptotics," Journal of Geographical Systems, Springer, vol. 21(2), pages 237-269, June.
    20. Alexander März & Nadja Klein & Thomas Kneib & Oliver Musshoff, 2016. "Analysing farmland rental rates using Bayesian geoadditive quantile regression," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 43(4), pages 663-698.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jgeogr:v:3:y:2023:i:3:p:28-562:d:1226547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.