IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v26y2023i2d10.1007_s10729-022-09626-z.html
   My bibliography  Save this article

Predicting no-show appointments in a pediatric hospital in Chile using machine learning

Author

Listed:
  • J. Dunstan

    (University of Chile
    Pontificia Universidad Católica de Chile)

  • F. Villena

    (University of Chile)

  • J.P. Hoyos

    (Universidad Nacional de Colombia Sede De La Paz)

  • V. Riquelme

    (University of Chile)

  • M. Royer

    (Dr. Luis Calvo Mackenna Hospital)

  • H. Ramírez

    (University of Chile
    University of Chile)

  • J. Peypouquet

    (Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, Faculty of Science and EngineeringUniversity of Groningen)

Abstract

The Chilean public health system serves 74% of the country’s population, and 19% of medical appointments are missed on average because of no-shows. The national goal is 15%, which coincides with the average no-show rate reported in the private healthcare system. Our case study, Doctor Luis Calvo Mackenna Hospital, is a public high-complexity pediatric hospital and teaching center in Santiago, Chile. Historically, it has had high no-show rates, up to 29% in certain medical specialties. Using machine learning algorithms to predict no-shows of pediatric patients in terms of demographic, social, and historical variables. To propose and evaluate metrics to assess these models, accounting for the cost-effective impact of possible intervention strategies to reduce no-shows. We analyze the relationship between a no-show and demographic, social, and historical variables, between 2015 and 2018, through the following traditional machine learning algorithms: Random Forest, Logistic Regression, Support Vector Machines, AdaBoost and algorithms to alleviate the problem of class imbalance, such as RUS Boost, Balanced Random Forest, Balanced Bagging and Easy Ensemble. These class imbalances arise from the relatively low number of no-shows to the total number of appointments. Instead of the default thresholds used by each method, we computed alternative ones via the minimization of a weighted average of type I and II errors based on cost-effectiveness criteria. 20.4% of the 395,963 appointments considered presented no-shows, with ophthalmology showing the highest rate among specialties at 29.1%. Patients in the most deprived socioeconomic group according to their insurance type and commune of residence and those in their second infancy had the highest no-show rate. The history of non-attendance is strongly related to future no-shows. An 8-week experimental design measured a decrease in no-shows of 10.3 percentage points when using our reminder strategy compared to a control group. Among the variables analyzed, those related to patients’ historical behavior, the reservation delay from the creation of the appointment, and variables that can be associated with the most disadvantaged socioeconomic group, are the most relevant to predict a no-show. Moreover, the introduction of new cost-effective metrics significantly impacts the validity of our prediction models. Using a prototype to call patients with the highest risk of no-shows resulted in a noticeable decrease in the overall no-show rate.

Suggested Citation

  • J. Dunstan & F. Villena & J.P. Hoyos & V. Riquelme & M. Royer & H. Ramírez & J. Peypouquet, 2023. "Predicting no-show appointments in a pediatric hospital in Chile using machine learning," Health Care Management Science, Springer, vol. 26(2), pages 313-329, June.
  • Handle: RePEc:kap:hcarem:v:26:y:2023:i:2:d:10.1007_s10729-022-09626-z
    DOI: 10.1007/s10729-022-09626-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-022-09626-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-022-09626-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kazim Topuz & Hasmet Uner & Asil Oztekin & Mehmet Bayram Yildirim, 2018. "Predicting pediatric clinic no-shows: a decision analytic framework using elastic net and Bayesian belief network," Annals of Operations Research, Springer, vol. 263(1), pages 479-499, April.
    2. Yong-Hong Kuo & Hari Balasubramanian & Yan Chen, 2020. "Medical appointment overbooking and optimal scheduling: tradeoffs between schedule efficiency and accessibility to service," Flexible Services and Manufacturing Journal, Springer, vol. 32(1), pages 72-101, March.
    3. Adel Alaeddini & Kai Yang & Chandan Reddy & Susan Yu, 2011. "A probabilistic model for predicting the probability of no-show in hospital appointments," Health Care Management Science, Springer, vol. 14(2), pages 146-157, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazim Topuz & Timothy L. Urban & Robert A. Russell & Mehmet B. Yildirim, 2024. "Decision support system for appointment scheduling and overbooking under patient no-show behavior," Annals of Operations Research, Springer, vol. 342(1), pages 845-873, November.
    2. Mi Young Suk & Bomgyeol Kim & Sang Gyu Lee & Chang Hoon You & Tae Hyun Kim, 2021. "Evaluation of Patient No-Shows in a Tertiary Hospital: Focusing on Modes of Appointment-Making and Type of Appointment," IJERPH, MDPI, vol. 18(6), pages 1-14, March.
    3. Simsek, Serhat & Dag, Ali & Tiahrt, Thomas & Oztekin, Asil, 2021. "A Bayesian Belief Network-based probabilistic mechanism to determine patient no-show risk categories," Omega, Elsevier, vol. 100(C).
    4. Kazim Topuz & Behrooz Davazdahemami & Dursun Delen, 2024. "A Bayesian belief network-based analytics methodology for early-stage risk detection of novel diseases," Annals of Operations Research, Springer, vol. 341(1), pages 673-697, October.
    5. Ulla Vaeggemose & Emely Ek Blæhr & Anne Marie L. Thomsen & Viola Burau & Pia Vedel Ankersen & Stina Lou, 2020. "Fine for non‐attendance in public hospitals in Denmark: A survey of non‐attenders' reasons and attitudes," International Journal of Health Planning and Management, Wiley Blackwell, vol. 35(5), pages 1055-1064, September.
    6. Ni, Ji & Chen, Bowei & Allinson, Nigel M. & Ye, Xujiong, 2020. "A hybrid model for predicting human physical activity status from lifelogging data," European Journal of Operational Research, Elsevier, vol. 281(3), pages 532-542.
    7. F. Benedetto & L. Mastroeni & P. Vellucci, 2021. "Modeling the flow of information between financial time-series by an entropy-based approach," Annals of Operations Research, Springer, vol. 299(1), pages 1235-1252, April.
    8. Wang, Qiang & Zhang, Wen & Li, Jian & Ma, Zhenzhong, 2023. "Complements or confounders? A study of effects of target and non-target features on online fraudulent reviewer detection," Journal of Business Research, Elsevier, vol. 167(C).
    9. Kazim Topuz & Hasmet Uner & Asil Oztekin & Mehmet Bayram Yildirim, 2018. "Predicting pediatric clinic no-shows: a decision analytic framework using elastic net and Bayesian belief network," Annals of Operations Research, Springer, vol. 263(1), pages 479-499, April.
    10. Cankaya, Burak & Topuz, Kazim & Delen, Dursun & Glassman, Aaron, 2023. "Evidence-based managerial decision-making with machine learning: The case of Bayesian inference in aviation incidents," Omega, Elsevier, vol. 120(C).
    11. Dominik Schreyer & Sascha L. Schmidt & Benno Torgler, 2019. "Football Spectator No-Show Behavior," Journal of Sports Economics, , vol. 20(4), pages 580-602, May.
    12. Murtaza Nasir & Nichalin Summerfield & Ali Dag & Asil Oztekin, 2020. "A service analytic approach to studying patient no-shows," Service Business, Springer;Pan-Pacific Business Association, vol. 14(2), pages 287-313, June.
    13. Dina Bentayeb & Nadia Lahrichi & Louis-Martin Rousseau, 2019. "Patient scheduling based on a service-time prediction model: a data-driven study for a radiotherapy center," Health Care Management Science, Springer, vol. 22(4), pages 768-782, December.
    14. Dantas, Leila F. & Fleck, Julia L. & Cyrino Oliveira, Fernando L. & Hamacher, Silvio, 2018. "No-shows in appointment scheduling – a systematic literature review," Health Policy, Elsevier, vol. 122(4), pages 412-421.
    15. Borges, Ana & Carvalho, Mariana & Maia, Miguel & Guimarães, Miguel & Carneiro, Davide, 2023. "Predicting and explaining absenteeism risk in hospital patients before and during COVID-19," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    16. Cheng Wang & Runhua Wu & Lili Deng & Yong Chen & Yingde Li & Yuehua Wan, 2020. "A Bibliometric Analysis on No-Show Research: Status, Hotspots, Trends and Outlook," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
    17. Imran Ali & Devika Kannan, 2022. "Mapping research on healthcare operations and supply chain management: a topic modelling-based literature review," Annals of Operations Research, Springer, vol. 315(1), pages 29-55, August.
    18. Szczygielski, Jan Jakub & Charteris, Ailie & Obojska, Lidia & Brzeszczyński, Janusz, 2024. "Capturing the timing of crisis evolution: A machine learning and directional wavelet coherence approach to isolating event-specific uncertainty using Google searches with an application to COVID-19," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
    19. Paola Cappanera & Jingshan Li & Evren Sahin & Nico J. Vandaele & Filippo Visintin, 2020. "Editorial for the special issue on “Modelling, simulation, and optimization in health care”," Flexible Services and Manufacturing Journal, Springer, vol. 32(1), pages 1-5, March.
    20. Rukiye Kaya & Said Salhi & Virginia Spiegler, 2023. "A novel integration of MCDM methods and Bayesian networks: the case of incomplete expert knowledge," Annals of Operations Research, Springer, vol. 320(1), pages 205-234, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:26:y:2023:i:2:d:10.1007_s10729-022-09626-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.