IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v25y2022i4d10.1007_s10729-022-09604-5.html
   My bibliography  Save this article

Unsupervised learning methods for efficient geographic clustering and identification of disease disparities with applications to county-level colorectal cancer incidence in California

Author

Listed:
  • Mallory E. McMahon

    (North Carolina State University)

  • Lyubov Doroshenko

    (La Sapienza University of Rome)

  • Javad Roostaei

    (UNC Gillings School of Global Public Health Chapel Hill)

  • Hyunsoon Cho

    (National Cancer Center)

  • Mansoor A. Haider

    (North Carolina State University)

Abstract

Many public health policymaking questions involve data subsets representing application-specific attributes and geographic location. We develop and evaluate standard and tailored techniques for clustering via unsupervised learning (UL) algorithms on such amalgamated (dual-domain) data sets. The aim of the associated algorithms is to identify geographically efficient clusters that also maximize the number of statistically significant differences in disease incidence and demographic variables across top clusters. Two standard UL approaches, k means with k++ initialization (k++) and the standard self-organizing map (SSOM), are considered along with a new, tailored version of the SOM (TSOM). The TSOM algorithm involves optimization of a customized objective function with terms promoting individual geographic cluster cohesion while also maximizing the number of differences across clusters, and two hyper-parameters controlling the relative weighting of geographic and attribute subspaces in a non-Euclidean distance measure within the clustering problem. The performance of these three techniques (k++, SSOM, TSOM) is compared and evaluated in the context of a data set for colorectal cancer incidence in the state of California, at the level of individual counties. Clusters are visualized via chloropleth maps and ordered graphs are also used to illustrate disparities in disease incidence among four identity groups. While all three approaches performed well, the TSOM identified the largest number of disease and demographic disparities while also yielding more geographically efficient top clusters. Techniques presented in this study are relevant to applications including the delivery of health care resources and identifying disparities among identity groups, and to questions involving coordination between county- and state-level policymakers.

Suggested Citation

  • Mallory E. McMahon & Lyubov Doroshenko & Javad Roostaei & Hyunsoon Cho & Mansoor A. Haider, 2022. "Unsupervised learning methods for efficient geographic clustering and identification of disease disparities with applications to county-level colorectal cancer incidence in California," Health Care Management Science, Springer, vol. 25(4), pages 574-589, December.
  • Handle: RePEc:kap:hcarem:v:25:y:2022:i:4:d:10.1007_s10729-022-09604-5
    DOI: 10.1007/s10729-022-09604-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-022-09604-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-022-09604-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Thorndike, 1953. "Who belongs in the family?," Psychometrika, Springer;The Psychometric Society, vol. 18(4), pages 267-276, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Becken, Susanne & Stantic, Bela & Chen, Jinyan & Connolly, Rod M., 2022. "Twitter conversations reveal issue salience of aviation in the broader context of climate change," Journal of Air Transport Management, Elsevier, vol. 98(C).
    2. Archana R. Panhalkar & Dharmpal D. Doye, 2020. "An approach of improving decision tree classifier using condensed informative data," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 47(4), pages 431-445, December.
    3. Michele Cincera, 2005. "Firms' productivity growth and R&D spillovers: An analysis of alternative technological proximity measures," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 14(8), pages 657-682.
    4. Horstmann, Felix, 2017. "Measuring the shopper's attitude toward the point of sale display: Scale development and validation," Journal of Retailing and Consumer Services, Elsevier, vol. 36(C), pages 112-123.
    5. Elizaveta Zinovyeva & Raphael C. G. Reule & Wolfgang Karl Hardle, 2021. "Understanding Smart Contracts: Hype or Hope?," Papers 2103.08447, arXiv.org.
    6. Zhao, Yingrui & Hu, Songhua & Zhang, Ming, 2024. "Evaluating equitable Transit-Oriented development (TOD) via the Node-Place-People model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 185(C).
    7. Chester Harris, 1955. "Characteristics of two measures of profile similarity," Psychometrika, Springer;The Psychometric Society, vol. 20(4), pages 289-297, December.
    8. Marrel, Amandine & Iooss, Bertrand, 2024. "Probabilistic surrogate modeling by Gaussian process: A new estimation algorithm for more robust prediction," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    9. Shahzad, Murtuza & Alhoori, Hamed & Freedman, Reva & Rahman, Shaikh Abdul, 2022. "Quantifying the online long-term interest in research," Journal of Informetrics, Elsevier, vol. 16(2).
    10. Boztug, Yasemin & Reutterer, Thomas, 2008. "A combined approach for segment-specific market basket analysis," European Journal of Operational Research, Elsevier, vol. 187(1), pages 294-312, May.
    11. Martin Kueppers & Christian Perau & Marco Franken & Hans Joerg Heger & Matthias Huber & Michael Metzger & Stefan Niessen, 2020. "Data-Driven Regionalization of Decarbonized Energy Systems for Reflecting Their Changing Topologies in Planning and Optimization," Energies, MDPI, vol. 13(16), pages 1-15, August.
    12. João Antunes Rodrigues & Alexandre Martins & Mateus Mendes & José Torres Farinha & Ricardo J. G. Mateus & Antonio J. Marques Cardoso, 2022. "Automatic Risk Assessment for an Industrial Asset Using Unsupervised and Supervised Learning," Energies, MDPI, vol. 15(24), pages 1-17, December.
    13. Chompoonut Kongphunphin & Manat Srivanit, 2021. "A Multi-Dimensional Clustering Applied to Classify the Typology of Urban Public Parks in Bangkok Metropolitan Area, Thailand," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    14. Glenn Milligan & Martha Cooper, 1985. "An examination of procedures for determining the number of clusters in a data set," Psychometrika, Springer;The Psychometric Society, vol. 50(2), pages 159-179, June.
    15. Isakov , Alexander, 2013. "Stress indicator construction for internal money market," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 30(2), pages 77-92.
    16. Aurelia Rybak & Aleksandra Rybak & Spas D. Kolev, 2021. "Analysis of the EU-27 Countries Energy Markets Integration in Terms of the Sustainable Development SDG7 Implementation," Energies, MDPI, vol. 14(21), pages 1-22, October.
    17. Mr. Emre Alper & Michal Miktus, 2019. "Digital Connectivity in sub-Saharan Africa: A Comparative Perspective," IMF Working Papers 2019/210, International Monetary Fund.
    18. Zlatana Nenova & Jennifer Shang, 2022. "Chronic Disease Progression Prediction: Leveraging Case‐Based Reasoning and Big Data Analytics," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 259-280, January.
    19. Yang, Zaili & Yang, Zhisen & Smith, John & Robert, Bostock Adam Peter, 2021. "Risk analysis of bicycle accidents: A Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    20. Achilleas Anastasiou & Peter Hatzopoulos & Alex Karagrigoriou & George Mavridoglou, 2021. "Causality Distance Measures for Multivariate Time Series with Applications," Mathematics, MDPI, vol. 9(21), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:25:y:2022:i:4:d:10.1007_s10729-022-09604-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.