IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v25y2022i3d10.1007_s10729-022-09592-6.html
   My bibliography  Save this article

A dynamic sequential decision-making model on MRI real-time scheduling with simulation-based optimization

Author

Listed:
  • Bowen Pang

    (Tsinghua University)

  • Xiaolei Xie

    (Tsinghua University)

  • Feng Ju

    (Arizona State University)

  • James Pipe

    (Department of Radiology, Mayo Clinic)

Abstract

Magnetic resonance imaging (MRI) is widely used in diagnostic medicine and contributes significantly to US health care spending. Scheduling MRI jobs involves uncertainties (e.g., patient arrival time, scanning time, and preparation time) that can lead to excessive delays and high costs in MRI operations. This study addresses real-time decision making in use of MRI scanners based on job assignment and sequencing decisions that override the appointment schedule. The decisions are made using real-time information of the waiting patients, the utilization status of the MRI scanners, and the partially revealed uncertainties of scanning times of current patients. A sequential decision-making framework and a simulation-based solution method are proposed to utilize massive real-time information and match the use of MRI rescheduling in practice. The results are then compared with a real case in a large midwestern academic medical center in the US. This study illustrates that the proposed method reduces patient waiting time by 21.7% and improves utilization of MRI scanners by 23.0%. An optimality gap of 13.6% is provided when compared to off line scheduling methods based on a mixed integer programming (MIP) model. The number of simulation replications in this approach uses the ranking and selection method, which not only reduces solution time, but also provides solution quality guarantees wherein the probability of errors in the proposed method for one day is less than 0.1%. In 100 randomly generated workday experiments, all of the scheduling decisions given by the proposed method perform better than current policy, with an average reduction of 17.93 minutes in each patient’s waiting time and an improvement of scanner utilization by 7.20%.

Suggested Citation

  • Bowen Pang & Xiaolei Xie & Feng Ju & James Pipe, 2022. "A dynamic sequential decision-making model on MRI real-time scheduling with simulation-based optimization," Health Care Management Science, Springer, vol. 25(3), pages 426-440, September.
  • Handle: RePEc:kap:hcarem:v:25:y:2022:i:3:d:10.1007_s10729-022-09592-6
    DOI: 10.1007/s10729-022-09592-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-022-09592-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-022-09592-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edmund Burke & Michael Pinedo, 2019. "Journal of scheduling (2019)," Journal of Scheduling, Springer, vol. 22(1), pages 1-2, February.
    2. S. Ayca Erdogan & Alexander Gose & Brian T. Denton, 2015. "Online appointment sequencing and scheduling," IISE Transactions, Taylor & Francis Journals, vol. 47(11), pages 1267-1286, November.
    3. Geng, Na & Xie, Xiaolan, 2012. "Optimizing contracted resource capacity with two advance cancelation modes," European Journal of Operational Research, Elsevier, vol. 221(3), pages 501-512.
    4. Suresh, V. & Chaudhuri, Dipak, 1993. "Dynamic scheduling--a survey of research," International Journal of Production Economics, Elsevier, vol. 32(1), pages 53-63, August.
    5. Paola Cappanera & Filippo Visintin & Carlo Banditori & Daniele Feo, 2019. "Evaluating the long-term effects of appointment scheduling policies in a magnetic resonance imaging setting," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 212-254, March.
    6. Papanicolas, Irene & Woskie, Liana R. & Jha, Ashish K., 2018. "Health care spending in the United States and other high-income countries," LSE Research Online Documents on Economics 87362, London School of Economics and Political Science, LSE Library.
    7. Lee, Kangbok & Zheng, Feifeng & Pinedo, Michael L., 2019. "Online scheduling of ordered flow shops," European Journal of Operational Research, Elsevier, vol. 272(1), pages 50-60.
    8. Yasin Gocgun, 2018. "Simulation-based approximate policy iteration for dynamic patient scheduling for radiation therapy," Health Care Management Science, Springer, vol. 21(3), pages 317-325, September.
    9. Li Luo & Ying Zhou & Bernard T. Han & Jialing Li, 2019. "An optimization model to determine appointment scheduling window for an outpatient clinic with patient no-shows," Health Care Management Science, Springer, vol. 22(1), pages 68-84, March.
    10. Christos Zacharias & Michael Pinedo, 2017. "Managing Customer Arrivals in Service Systems with Multiple Identical Servers," Manufacturing & Service Operations Management, INFORMS, vol. 19(4), pages 639-656, October.
    11. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    12. William P. Millhiser & Emre A. Veral, 2019. "A decision support system for real-time scheduling of multiple patient classes in outpatient services," Health Care Management Science, Springer, vol. 22(1), pages 180-195, March.
    13. Linda V. Green & Sergei Savin & Ben Wang, 2006. "Managing Patient Service in a Diagnostic Medical Facility," Operations Research, INFORMS, vol. 54(1), pages 11-25, February.
    14. Jianzhe Luo & Vidyadhar G. Kulkarni & Serhan Ziya, 2012. "Appointment Scheduling Under Patient No-Shows and Service Interruptions," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 670-684, October.
    15. Nan Liu & Serhan Ziya & Vidyadhar G. Kulkarni, 2010. "Dynamic Scheduling of Outpatient Appointments Under Patient No-Shows and Cancellations," Manufacturing & Service Operations Management, INFORMS, vol. 12(2), pages 347-364, September.
    16. Jeunghyun Kim & Ramandeep S. Randhawa & Amy R. Ward, 2018. "Dynamic Scheduling in a Many-Server, Multiclass System: The Role of Customer Impatience in Large Systems," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 285-301, May.
    17. Geng, Na & Xie, Xiaolan & Jiang, Zhibin, 2013. "Implementation strategies of a contract-based MRI examination reservation process for stroke patients," European Journal of Operational Research, Elsevier, vol. 231(2), pages 371-380.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paola Cappanera & Filippo Visintin & Carlo Banditori & Daniele Feo, 2019. "Evaluating the long-term effects of appointment scheduling policies in a magnetic resonance imaging setting," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 212-254, March.
    2. Christos Zacharias & Tallys Yunes, 2020. "Multimodularity in the Stochastic Appointment Scheduling Problem with Discrete Arrival Epochs," Management Science, INFORMS, vol. 66(2), pages 744-763, February.
    3. Gang Du & Xinyue Li & Hui Hu & Xiaoling Ouyang, 2018. "Optimizing Daily Service Scheduling for Medical Diagnostic Equipment Considering Patient Satisfaction and Hospital Revenue," Sustainability, MDPI, vol. 10(9), pages 1-23, September.
    4. Dongyang Wang & Kumar Muthuraman & Douglas Morrice, 2019. "Coordinated Patient Appointment Scheduling for a Multistation Healthcare Network," Operations Research, INFORMS, vol. 67(3), pages 599-618, May.
    5. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    6. Cai, Yun & Song, Haiqing & Wang, Shan, 2024. "Managing appointment-based services with electronic visits," European Journal of Operational Research, Elsevier, vol. 315(3), pages 863-878.
    7. Miao Bai & Bjorn Berg & Esra Sisikoglu Sir & Mustafa Y. Sir, 2023. "Partially partitioned templating strategies for outpatient specialty practices," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 301-318, January.
    8. Na Geng & Letian Chen & Ran Liu & Yanhong Zhu, 2017. "Optimal patient assignment for W queueing network in a diagnostic facility setting," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5609-5631, October.
    9. Aditya Shetty & Harry Groenevelt & Vera Tilson, 2023. "Intraday dynamic rescheduling under patient no-shows," Health Care Management Science, Springer, vol. 26(3), pages 583-598, September.
    10. Murtaza Nasir & Nichalin Summerfield & Ali Dag & Asil Oztekin, 2020. "A service analytic approach to studying patient no-shows," Service Business, Springer;Pan-Pacific Business Association, vol. 14(2), pages 287-313, June.
    11. Harris, Shannon L. & May, Jerrold H. & Vargas, Luis G. & Foster, Krista M., 2020. "The effect of cancelled appointments on outpatient clinic operations," European Journal of Operational Research, Elsevier, vol. 284(3), pages 847-860.
    12. Cheng Wang & Runhua Wu & Lili Deng & Yong Chen & Yingde Li & Yuehua Wan, 2020. "A Bibliometric Analysis on No-Show Research: Status, Hotspots, Trends and Outlook," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
    13. Soltani, Mohamad & Samorani, Michele & Kolfal, Bora, 2019. "Appointment scheduling with multiple providers and stochastic service times," European Journal of Operational Research, Elsevier, vol. 277(2), pages 667-683.
    14. Pinar Keskinocak & Nicos Savva, 2020. "A Review of the Healthcare-Management (Modeling) Literature Published in Manufacturing & Service Operations Management," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 59-72, January.
    15. Van-Anh Truong, 2015. "Optimal Advance Scheduling," Management Science, INFORMS, vol. 61(7), pages 1584-1597, July.
    16. Kılıç, Hakan & Güneş, Evrim Didem, 2024. "Patient adherence in healthcare operations: A narrative review," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
    17. Liping Zhou & Na Geng & Zhibin Jiang & Shan Jiang, 2022. "Integrated Multiresource Capacity Planning and Multitype Patient Scheduling," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 129-149, January.
    18. Oualid Jouini & Saif Benjaafar & Bingnan Lu & Siqiao Li & Benjamin Legros, 2022. "Appointment-driven queueing systems with non-punctual customers," Queueing Systems: Theory and Applications, Springer, vol. 101(1), pages 1-56, June.
    19. Sharan Srinivas & A. Ravi Ravindran, 2020. "Designing schedule configuration of a hybrid appointment system for a two-stage outpatient clinic with multiple servers," Health Care Management Science, Springer, vol. 23(3), pages 360-386, September.
    20. Ruiwei Jiang & Siqian Shen & Yiling Zhang, 2017. "Integer Programming Approaches for Appointment Scheduling with Random No-Shows and Service Durations," Operations Research, INFORMS, vol. 65(6), pages 1638-1656, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:25:y:2022:i:3:d:10.1007_s10729-022-09592-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.