IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v272y2019i1p50-60.html
   My bibliography  Save this article

Online scheduling of ordered flow shops

Author

Listed:
  • Lee, Kangbok
  • Zheng, Feifeng
  • Pinedo, Michael L.

Abstract

We consider online as well as offline scheduling of ordered flow shops with the makespan as objective. In an online flow shop scheduling problem, jobs are revealed to a decisionmaker one by one going down a list. When a job is revealed to the decision maker, its operations have to be scheduled irrevocably without having any information regarding jobs that will be revealed afterwards. We consider for the online setting the so-called Greedy Algorithm which generates permutation schedules in which the jobs on the machines are at all times processed without any unnecessary delays. We focus on ordered flow shops, in particular proportionate flow shops with different speeds and proportionate flow shops with different setup times. We analyze the competitive ratio of the Greedy Algorithm for such flow shops in the online setting. For several cases, we derive lower bounds on the competitive ratios.

Suggested Citation

  • Lee, Kangbok & Zheng, Feifeng & Pinedo, Michael L., 2019. "Online scheduling of ordered flow shops," European Journal of Operational Research, Elsevier, vol. 272(1), pages 50-60.
  • Handle: RePEc:eee:ejores:v:272:y:2019:i:1:p:50-60
    DOI: 10.1016/j.ejor.2018.06.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718305319
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.06.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. L. Smith & S. S. Panwalkar & R. A. Dudek, 1975. "Flowshop Sequencing Problem with Ordered Processing Time Matrices," Management Science, INFORMS, vol. 21(5), pages 544-549, January.
    2. Teofilo Gonzalez & Sartaj Sahni, 1978. "Flowshop and Jobshop Schedules: Complexity and Approximation," Operations Research, INFORMS, vol. 26(1), pages 36-52, February.
    3. Peng Si Ow, 1985. "Focused Scheduling in Proportionate Flowshops," Management Science, INFORMS, vol. 31(7), pages 852-869, July.
    4. Hamilton Emmons & George Vairaktarakis, 2013. "Flow Shop Scheduling," International Series in Operations Research and Management Science, Springer, edition 127, number 978-1-4614-5152-5, December.
    5. S. M. Johnson, 1954. "Optimal two‐ and three‐stage production schedules with setup times included," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 1(1), pages 61-68, March.
    6. Estevez Fernandez, M.A. & Mosquera, M.A. & Borm, P.E.M. & Hamers, H.J.M., 2006. "Proportionate Flow Shop Games," Other publications TiSEM d54cb827-3347-4150-9792-b, Tilburg University, School of Economics and Management.
    7. S.S. Panwalkar & Milton L. Smith & Christos Koulamas, 2013. "Review of the ordered and proportionate flow shop scheduling research," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(1), pages 46-55, February.
    8. Michael Pinedo, 1982. "Minimizing the Expected Makespan in Stochastic Flow Shops," Operations Research, INFORMS, vol. 30(1), pages 148-162, February.
    9. Choi, Byung-Cheon & Lee, Kangbok & Leung, Joseph Y.-T. & Pinedo, Michael L., 2010. "Flow shops with machine maintenance: Ordered and proportionate cases," European Journal of Operational Research, Elsevier, vol. 207(1), pages 97-104, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Myoung-Ju Park & Byung-Cheon Choi & Yunhong Min & Kyung Min Kim, 2020. "Two-Machine Ordered Flow Shop Scheduling with Generalized Due Dates," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 37(01), pages 1-16, January.
    2. Jiang, Yiwei & Wu, Mengjing & Chen, Xin & Dong, Jianming & Cheng, T.C.E. & Blazewicz, Jacek & Ji, Min, 2024. "Online early work scheduling on parallel machines," European Journal of Operational Research, Elsevier, vol. 315(3), pages 855-862.
    3. Bowen Pang & Xiaolei Xie & Feng Ju & James Pipe, 2022. "A dynamic sequential decision-making model on MRI real-time scheduling with simulation-based optimization," Health Care Management Science, Springer, vol. 25(3), pages 426-440, September.
    4. Castro, Pedro M. & Harjunkoski, Iiro & Grossmann, Ignacio E., 2019. "Discrete and continuous-time formulations for dealing with break periods: Preemptive and non-preemptive scheduling," European Journal of Operational Research, Elsevier, vol. 278(2), pages 563-577.
    5. Ma, Ran & Guo, Sainan, 2021. "Applying “Peeling Onion” approach for competitive analysis in online scheduling with rejection," European Journal of Operational Research, Elsevier, vol. 290(1), pages 57-67.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S.S. Panwalkar & Christos Koulamas, 2015. "Proportionate flow shop: New complexity results and models with due date assignment," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(2), pages 98-106, March.
    2. S.S. Panwalkar & Milton L. Smith & Christos Koulamas, 2013. "Review of the ordered and proportionate flow shop scheduling research," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(1), pages 46-55, February.
    3. Yu, Tae-Sun & Pinedo, Michael, 2020. "Flow shops with reentry: Reversibility properties and makespan optimal schedules," European Journal of Operational Research, Elsevier, vol. 282(2), pages 478-490.
    4. S.S. Panwalkar & Christos Koulamas, 2015. "On equivalence between the proportionate flow shop and single‐machine scheduling problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(7), pages 595-603, October.
    5. Byung-Cheon Choi & Joseph Y.-T. Leung & Michael L. Pinedo, 2011. "Minimizing makespan in an ordered flow shop with machine-dependent processing times," Journal of Combinatorial Optimization, Springer, vol. 22(4), pages 797-818, November.
    6. Yu, Tae-Sun & Han, Jun-Hee, 2021. "Scheduling proportionate flow shops with preventive machine maintenance," International Journal of Production Economics, Elsevier, vol. 231(C).
    7. Shabtay, Dvir & Gilenson, Miri, 2023. "A state-of-the-art survey on multi-scenario scheduling," European Journal of Operational Research, Elsevier, vol. 310(1), pages 3-23.
    8. Yakov Zinder & Alexandr Kononov & Joey Fung, 2021. "A 5-parameter complexity classification of the two-stage flow shop scheduling problem with job dependent storage requirements," Journal of Combinatorial Optimization, Springer, vol. 42(2), pages 276-309, August.
    9. Choi, Byung-Cheon & Yoon, Suk-Hun & Chung, Sung-Jin, 2007. "Minimizing maximum completion time in a proportionate flow shop with one machine of different speed," European Journal of Operational Research, Elsevier, vol. 176(2), pages 964-974, January.
    10. Christoph Hertrich & Christian Weiß & Heiner Ackermann & Sandy Heydrich & Sven O. Krumke, 2020. "Scheduling a proportionate flow shop of batching machines," Journal of Scheduling, Springer, vol. 23(5), pages 575-593, October.
    11. Alexander Kononov & Julia Memar & Yakov Zinder, 2022. "On a borderline between the NP-hard and polynomial-time solvable cases of the flow shop with job-dependent storage requirements," Journal of Global Optimization, Springer, vol. 83(3), pages 445-456, July.
    12. Mohamed Amine Mkadem & Aziz Moukrim & Mehdi Serairi, 2021. "Exact method for the two-machine flow-shop problem with time delays," Annals of Operations Research, Springer, vol. 298(1), pages 375-406, March.
    13. Kameng Nip & Zhenbo Wang & Fabrice Talla Nobibon & Roel Leus, 2015. "A combination of flow shop scheduling and the shortest path problem," Journal of Combinatorial Optimization, Springer, vol. 29(1), pages 36-52, January.
    14. S. S. Panwalkar & Christos Koulamas, 2019. "The evolution of schematic representations of flow shop scheduling problems," Journal of Scheduling, Springer, vol. 22(4), pages 379-391, August.
    15. Myoung-Ju Park & Byung-Cheon Choi & Yunhong Min & Kyung Min Kim, 2020. "Two-Machine Ordered Flow Shop Scheduling with Generalized Due Dates," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 37(01), pages 1-16, January.
    16. Chung, Dae-Young & Choi, Byung-Cheon, 2013. "Outsourcing and scheduling for two-machine ordered flow shop scheduling problems," European Journal of Operational Research, Elsevier, vol. 226(1), pages 46-52.
    17. Javad Seif & Mohammad Dehghanimohammadabadi & Andrew Junfang Yu, 2020. "Integrated preventive maintenance and flow shop scheduling under uncertainty," Flexible Services and Manufacturing Journal, Springer, vol. 32(4), pages 852-887, December.
    18. Abdennour Azerine & Mourad Boudhar & Djamal Rebaine, 2022. "A two-machine no-wait flow shop problem with two competing agents," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 168-199, January.
    19. Yong Chen & Yinhui Cai & Longcheng Liu & Guangting Chen & Randy Goebel & Guohui Lin & Bing Su & An Zhang, 2022. "Path cover with minimum nontrivial paths and its application in two-machine flow-shop scheduling with a conflict graph," Journal of Combinatorial Optimization, Springer, vol. 43(3), pages 571-588, April.
    20. Koulamas, Christos & Kyparisis, George J., 2007. "Single-machine and two-machine flowshop scheduling with general learning functions," European Journal of Operational Research, Elsevier, vol. 178(2), pages 402-407, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:272:y:2019:i:1:p:50-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.