IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v25y2022i2d10.1007_s10729-021-09581-1.html
   My bibliography  Save this article

Bayesian prediction of emergency department wait time

Author

Listed:
  • Mani Suleiman

    (RMIT University
    Rozetta Institute (formerly Capital Markets CRC Limited))

  • Haydar Demirhan

    (RMIT University)

  • Leanne Boyd

    (Cabrini Institute
    Eastern Health)

  • Federico Girosi

    (Western Sydney University
    Digital Health CRC)

  • Vural Aksakalli

    (RMIT University)

Abstract

Increasingly, many hospitals are attempting to provide more accurate information about Emergency Department (ED) wait time to their patients. Estimation of ED wait time usually depends on what is known about the patient and also the status of the ED at the time of presentation. We provide a model for estimating ED wait time for prospective low acuity patients accessing information online prior to arrival. Little is known about the prospective patient and their condition. We develop a Bayesian quantile regression approach to provide an estimated wait time range for prospective patients. Our proposed approach incorporates a priori information in government statistics and elicited expert opinion. This methodology is compared to frequentist quantile regression and Bayesian quantile regression with non-informative priors. The test set includes 1, 024 low acuity presentations, of which 457 (44%) are Category 3, 425 (41%) are Category 4 and 160 (15%) are Category 5. On the Huber loss metric, the proposed method performs best on the test data for both median and 90th percentile prediction compared to non-informative Bayesian quantile regression and frequentist quantile regression. We obtain a benefit in the estimation of model coefficients due to the value contributed by a priori information in the form of elicited expert guesses guided by government wait time statistics. The use of such informative priors offers a beneficial approach to ED wait time prediction with demonstrable potential to improve wait time quantile estimates.

Suggested Citation

  • Mani Suleiman & Haydar Demirhan & Leanne Boyd & Federico Girosi & Vural Aksakalli, 2022. "Bayesian prediction of emergency department wait time," Health Care Management Science, Springer, vol. 25(2), pages 275-290, June.
  • Handle: RePEc:kap:hcarem:v:25:y:2022:i:2:d:10.1007_s10729-021-09581-1
    DOI: 10.1007/s10729-021-09581-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-021-09581-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-021-09581-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Josephine Merhi Bleik, 2019. "Fully Bayesian Estimation of Simultaneous Regression Quantiles under Asymmetric Laplace Distribution Specification," Journal of Probability and Statistics, Hindawi, vol. 2019, pages 1-12, June.
    2. Rahim Alhamzawi & Keming Yu, 2011. "Power Prior Elicitation in Bayesian Quantile Regression," Journal of Probability and Statistics, Hindawi, vol. 2011, pages 1-16, December.
    3. Di Lin & Jonathan Patrick & Fabrice Labeau, 2014. "Estimating the waiting time of multi-priority emergency patients with downstream blocking," Health Care Management Science, Springer, vol. 17(1), pages 88-99, March.
    4. Erjie Ang & Sara Kwasnick & Mohsen Bayati & Erica L. Plambeck & Michael Aratow, 2016. "Accurate Emergency Department Wait Time Prediction," Manufacturing & Service Operations Management, INFORMS, vol. 18(1), pages 141-156, February.
    5. Kottas A. & Gelfand A.E., 2001. "Bayesian Semiparametric Median Regression Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1458-1468, December.
    6. Pak, Anton & Gannon, Brenda & Staib, Andrew, 2020. "Forecasting Waiting Time to Treatment for Emergency Department Patients," OSF Preprints d25se, Center for Open Science.
    7. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    8. Benoit, Dries F. & Van den Poel, Dirk, 2017. "bayesQR: A Bayesian Approach to Quantile Regression," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i07).
    9. Garthwaite, Paul H. & Kadane, Joseph B. & O'Hagan, Anthony, 2005. "Statistical Methods for Eliciting Probability Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 680-701, June.
    10. Taddy, Matthew A. & Kottas, Athanasios, 2010. "A Bayesian Nonparametric Approach to Inference for Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 357-369.
    11. Alhamzawi, Rahim & Yu, Keming, 2013. "Conjugate priors and variable selection for Bayesian quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 209-219.
    12. Yu, Keming & Moyeed, Rana A., 2001. "Bayesian quantile regression," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 437-447, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jongkyung Shin & Donggi Augustine Lee & Juram Kim & Chiehyeon Lim & Byung-Kwan Choi, 2024. "Dissatisfaction-considered waiting time prediction for outpatients with interpretable machine learning," Health Care Management Science, Springer, vol. 27(3), pages 370-390, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alhamzawi, Rahim, 2016. "Bayesian model selection in ordinal quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 68-78.
    2. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    3. Seongil Jo & Taeyoung Roh & Taeryon Choi, 2016. "Bayesian spectral analysis models for quantile regression with Dirichlet process mixtures," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 177-206, March.
    4. Genya Kobayashi & Hideo Kozumi, 2012. "Bayesian analysis of quantile regression for censored dynamic panel data," Computational Statistics, Springer, vol. 27(2), pages 359-380, June.
    5. Xianhua Dai & Wolfgang Karl Härdle & Keming Yu, 2016. "Do maternal health problems influence child's worrying status? Evidence from the British Cohort Study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 2941-2955, December.
    6. Henry R. Scharf & Xinyi Lu & Perry J. Williams & Mevin B. Hooten, 2022. "Constructing Flexible, Identifiable and Interpretable Statistical Models for Binary Data," International Statistical Review, International Statistical Institute, vol. 90(2), pages 328-345, August.
    7. Christian E. Galarza & Panpan Zhang & Víctor H. Lachos, 2021. "Logistic Quantile Regression for Bounded Outcomes Using a Family of Heavy-Tailed Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 325-349, November.
    8. Sriram, Karthik, 2015. "A sandwich likelihood correction for Bayesian quantile regression based on the misspecified asymmetric Laplace density," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 18-26.
    9. Lane F. Burgette & Jerome P. Reiter, 2012. "Modeling Adverse Birth Outcomes via Confirmatory Factor Quantile Regression," Biometrics, The International Biometric Society, vol. 68(1), pages 92-100, March.
    10. Torossian, Léonard & Picheny, Victor & Faivre, Robert & Garivier, Aurélien, 2020. "A review on quantile regression for stochastic computer experiments," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    11. Priya Kedia & Damitri Kundu & Kiranmoy Das, 2023. "A Bayesian variable selection approach to longitudinal quantile regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 149-168, March.
    12. Pfarrhofer, Michael, 2022. "Modeling tail risks of inflation using unobserved component quantile regressions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    13. Petrella, Lea & Raponi, Valentina, 2019. "Joint estimation of conditional quantiles in multivariate linear regression models with an application to financial distress," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 70-84.
    14. Ali Aghamohammadi, 2018. "Bayesian analysis of dynamic panel data by penalized quantile regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 91-108, March.
    15. Karthik Sriram & R. V. Ramamoorthi & Pulak Ghosh, 2016. "On Bayesian Quantile Regression Using a Pseudo-joint Asymmetric Laplace Likelihood," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(1), pages 87-104, February.
    16. repec:hum:wpaper:sfb649dp2014-021 is not listed on IDEAS
    17. Marco Bottone & Lea Petrella & Mauro Bernardi, 2021. "Unified Bayesian conditional autoregressive risk measures using the skew exponential power distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 1079-1107, September.
    18. Salaheddine El Adlouni, 2018. "Quantile regression C-vine copula model for spatial extremes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 299-317, October.
    19. Elisabeth Waldmann & Thomas Kneib & Yu Ryan Yu & Stefan Lang, 2012. "Bayesian semiparametric additive quantile regression," Working Papers 2012-06, Faculty of Economics and Statistics, Universität Innsbruck.
    20. Dries Benoit & Rahim Alhamzawi & Keming Yu, 2013. "Bayesian lasso binary quantile regression," Computational Statistics, Springer, vol. 28(6), pages 2861-2873, December.
    21. Bhattacharya, Indrabati & Ghosal, Subhashis, 2021. "Bayesian multivariate quantile regression using Dependent Dirichlet Process prior," Journal of Multivariate Analysis, Elsevier, vol. 185(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:25:y:2022:i:2:d:10.1007_s10729-021-09581-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.