IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v24y2021i1d10.1007_s10729-020-09528-y.html
   My bibliography  Save this article

A robust optimization model for tactical capacity planning in an outpatient setting

Author

Listed:
  • Nazanin Aslani

    (Concordia University)

  • Onur Kuzgunkaya

    (Concordia University)

  • Navneet Vidyarthi

    (John Molson School of Business, Concordia University)

  • Daria Terekhov

    (Concordia University)

Abstract

Tactical capacity planning is a key element of planning and control decisions in healthcare settings, focusing on the medium-term allocation of a clinic’s resources to appointments of different types. One of the most scarce resources in healthcare is physician time. Due to uncertainty in demand for appointments, it is difficult to provide an exact match between the planned physician availability and appointment requests. Our study uses cardinality-constrained robust optimization to develop tactical capacity plans which are robust against uncertainty, providing a feasible allocation of capacity for all realizations of demand to the extent allowed by the budget of uncertainty. The outpatient setting we consider sees first-visit patients and re-visit patients, and both patient types have access time targets. We experimentally evaluate our robust model and its practical implications under different levels of conservatism. We show that we can guarantee 100% feasibility of the robust tactical capacity plan while not being fully conservative, which will lead to the clinic saving money while being able to meet demand despite uncertainty. We also show how the robust model helps us to identify the critical time periods leading to worst case physician peak load, which could be valuable to decision-makers. Throughout the experiments, we find that the step of translating available data into an uncertainty set can influence the true conservatism of a solution.

Suggested Citation

  • Nazanin Aslani & Onur Kuzgunkaya & Navneet Vidyarthi & Daria Terekhov, 2021. "A robust optimization model for tactical capacity planning in an outpatient setting," Health Care Management Science, Springer, vol. 24(1), pages 26-40, March.
  • Handle: RePEc:kap:hcarem:v:24:y:2021:i:1:d:10.1007_s10729-020-09528-y
    DOI: 10.1007/s10729-020-09528-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-020-09528-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-020-09528-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    2. Brian T. Denton & Andrew J. Miller & Hari J. Balasubramanian & Todd R. Huschka, 2010. "Optimal Allocation of Surgery Blocks to Operating Rooms Under Uncertainty," Operations Research, INFORMS, vol. 58(4-part-1), pages 802-816, August.
    3. Dimitris Bertsimas & Aurélie Thiele, 2006. "A Robust Optimization Approach to Inventory Theory," Operations Research, INFORMS, vol. 54(1), pages 150-168, February.
    4. Peter Hulshof & Richard Boucherie & Erwin Hans & Johann Hurink, 2013. "Tactical resource allocation and elective patient admission planning in care processes," Health Care Management Science, Springer, vol. 16(2), pages 152-166, June.
    5. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    6. Omid Sanei Bajgiran & Masoumeh Kazemi Zanjani & Mustapha Nourelfath, 2017. "Forest harvesting planning under uncertainty: a cardinality-constrained approach," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 1914-1929, April.
    7. Jiafu Tang & Yu Wang, 2015. "An adjustable robust optimisation method for elective and emergency surgery capacity allocation with demand uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7317-7328, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nathan Preuss & Lin Guo & Janet K. Allen & Farrokh Mistree, 2022. "Improving Patient Flow in a Primary Care Clinic," SN Operations Research Forum, Springer, vol. 3(3), pages 1-22, September.
    2. Morteza Lalmazloumian & M. Fazle Baki & Majid Ahmadi, 2023. "A two-stage stochastic optimization framework to allocate operating room capacity in publicly-funded hospitals under uncertainty," Health Care Management Science, Springer, vol. 26(2), pages 238-260, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yu & Zhang, Yu & Tang, Jiafu, 2019. "A distributionally robust optimization approach for surgery block allocation," European Journal of Operational Research, Elsevier, vol. 273(2), pages 740-753.
    2. Andreas Thorsen & Tao Yao, 2017. "Robust inventory control under demand and lead time uncertainty," Annals of Operations Research, Springer, vol. 257(1), pages 207-236, October.
    3. Amir Ardestani-Jaafari & Erick Delage, 2016. "Robust Optimization of Sums of Piecewise Linear Functions with Application to Inventory Problems," Operations Research, INFORMS, vol. 64(2), pages 474-494, April.
    4. Guopeng Song & Roel Leus, 2022. "Parallel Machine Scheduling Under Uncertainty: Models and Exact Algorithms," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3059-3079, November.
    5. Sandeep Rath & Kumar Rajaram & Aman Mahajan, 2017. "Integrated Anesthesiologist and Room Scheduling for Surgeries: Methodology and Application," Operations Research, INFORMS, vol. 65(6), pages 1460-1478, December.
    6. Menglei Ji & Mohammad Mosaffa & Amir Ardestani-Jaafari & Jinlin Li & Chun Peng, 2024. "Integration of text-mining and telemedicine appointment optimization," Annals of Operations Research, Springer, vol. 341(1), pages 621-645, October.
    7. Morteza Lalmazloumian & M. Fazle Baki & Majid Ahmadi, 2023. "A two-stage stochastic optimization framework to allocate operating room capacity in publicly-funded hospitals under uncertainty," Health Care Management Science, Springer, vol. 26(2), pages 238-260, June.
    8. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    9. Hamed Mamani & Shima Nassiri & Michael R. Wagner, 2017. "Closed-Form Solutions for Robust Inventory Management," Management Science, INFORMS, vol. 63(5), pages 1625-1643, May.
    10. Metzker Soares, Paula & Thevenin, Simon & Adulyasak, Yossiri & Dolgui, Alexandre, 2024. "Adaptive robust optimization for lot-sizing under yield uncertainty," European Journal of Operational Research, Elsevier, vol. 313(2), pages 513-526.
    11. Aliakbari Sani, Sajad & Bahn, Olivier & Delage, Erick, 2022. "Affine decision rule approximation to address demand response uncertainty in smart Grids’ capacity planning," European Journal of Operational Research, Elsevier, vol. 303(1), pages 438-455.
    12. Roberto Gomes de Mattos & Fabricio Oliveira & Adriana Leiras & Abdon Baptista de Paula Filho & Paulo Gonçalves, 2019. "Robust optimization of the insecticide-treated bed nets procurement and distribution planning under uncertainty for malaria prevention and control," Annals of Operations Research, Springer, vol. 283(1), pages 1045-1078, December.
    13. Ashrafi, Hedieh & Thiele, Aurélie C., 2021. "A study of robust portfolio optimization with European options using polyhedral uncertainty sets," Operations Research Perspectives, Elsevier, vol. 8(C).
    14. Viktoryia Buhayenko & Dick den Hertog, 2017. "Adjustable Robust Optimisation approach to optimise discounts for multi-period supply chain coordination under demand uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 55(22), pages 6801-6823, November.
    15. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    16. Zhi Chen & Melvyn Sim & Peng Xiong, 2020. "Robust Stochastic Optimization Made Easy with RSOME," Management Science, INFORMS, vol. 66(8), pages 3329-3339, August.
    17. Jinzuo Guo & Tianyu Liu & Guopeng Song & Bo Guo, 2024. "Solving the Robust Shortest Path Problem with Multimodal Transportation," Mathematics, MDPI, vol. 12(19), pages 1-14, September.
    18. Sagnol, Guillaume & Barner, Christoph & Borndörfer, Ralf & Grima, Mickaël & Seeling, Matthes & Spies, Claudia & Wernecke, Klaus, 2018. "Robust allocation of operating rooms: A cutting plane approach to handle lognormal case durations," European Journal of Operational Research, Elsevier, vol. 271(2), pages 420-435.
    19. Cleber D. Rocco & Reinaldo Morabito, 2016. "Robust optimisation approach applied to the analysis of production / logistics and crop planning in the tomato processing industry," International Journal of Production Research, Taylor & Francis Journals, vol. 54(19), pages 5842-5861, October.
    20. Dimitris Bertsimas & Velibor V. Mišić, 2017. "Robust Product Line Design," Operations Research, INFORMS, vol. 65(1), pages 19-37, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:24:y:2021:i:1:d:10.1007_s10729-020-09528-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.