IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v55y2017i7p1914-1929.html
   My bibliography  Save this article

Forest harvesting planning under uncertainty: a cardinality-constrained approach

Author

Listed:
  • Omid Sanei Bajgiran
  • Masoumeh Kazemi Zanjani
  • Mustapha Nourelfath

Abstract

Harvesting planning (HP) is a key tactical decision in lumber supply chains. Harvesting areas in the forests are divided into different blocks with different types and quantities of raw materials (logs). Predicting the availability of raw materials in each block along with log demand is impossible in this industry. Hence, incorporating uncertainty into the HP problem is essential in order to obtain robust plans that do not drastically fluctuate in the presence of future perturbations in the forest and log market. In this paper, we propose a robust harvesting planning model formulated based on cardinality-constrained method. The latter provides some insights into the adjustment of the level of robustness of the harvesting plan over the planning horizon and protection against uncertainty. An extensive set of experiments based on Monte-Carlo simulation is also conducted in order to better validate the proposed robust optimisation approach.

Suggested Citation

  • Omid Sanei Bajgiran & Masoumeh Kazemi Zanjani & Mustapha Nourelfath, 2017. "Forest harvesting planning under uncertainty: a cardinality-constrained approach," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 1914-1929, April.
  • Handle: RePEc:taf:tprsxx:v:55:y:2017:i:7:p:1914-1929
    DOI: 10.1080/00207543.2016.1213915
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2016.1213915
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2016.1213915?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bredström, D. & Flisberg, P. & Rönnqvist, M., 2013. "A new method for robustness in rolling horizon planning," International Journal of Production Economics, Elsevier, vol. 143(1), pages 41-52.
    2. Kazemi Zanjani, Masoumeh & Ait-Kadi, Daoud & Nourelfath, Mustapha, 2010. "Robust production planning in a manufacturing environment with random yield: A case in sawmill production planning," European Journal of Operational Research, Elsevier, vol. 201(3), pages 882-891, March.
    3. Keyvanshokooh, Esmaeil & Ryan, Sarah M. & Kabir, Elnaz, 2016. "Hybrid robust and stochastic optimization for closed-loop supply chain network design using accelerated Benders decomposition," European Journal of Operational Research, Elsevier, vol. 249(1), pages 76-92.
    4. Kazemi Zanjani, Masoumeh & Sanei Bajgiran, Omid & Nourelfath, Mustapha, 2016. "A hybrid scenario cluster decomposition algorithm for supply chain tactical planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 252(2), pages 466-476.
    5. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    6. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    7. Sanei Bajgiran, Omid & Kazemi Zanjani, Masoumeh & Nourelfath, Mustapha, 2016. "The value of integrated tactical planning optimization in the lumber supply chain," International Journal of Production Economics, Elsevier, vol. 171(P1), pages 22-33.
    8. Dimitris Bertsimas & Aurélie Thiele, 2006. "A Robust Optimization Approach to Inventory Theory," Operations Research, INFORMS, vol. 54(1), pages 150-168, February.
    9. Nicolas Andalaft & Pablo Andalaft & Monique Guignard & Adrian Magendzo & Alexis Wainer & Andres Weintraub, 2003. "A Problem of Forest Harvesting and Road Building Solved Through Model Strengthening and Lagrangean Relaxation," Operations Research, INFORMS, vol. 51(4), pages 613-628, August.
    10. Chauhan, Satyaveer S. & Frayret, Jean-Marc & LeBel, Luc, 2009. "Multi-commodity supply network planning in the forest supply chain," European Journal of Operational Research, Elsevier, vol. 196(2), pages 688-696, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nazanin Aslani & Onur Kuzgunkaya & Navneet Vidyarthi & Daria Terekhov, 2021. "A robust optimization model for tactical capacity planning in an outpatient setting," Health Care Management Science, Springer, vol. 24(1), pages 26-40, March.
    2. Alonso-Ayuso, Antonio & Escudero, Laureano F. & Guignard, Monique & Weintraub, Andres, 2018. "Risk management for forestry planning under uncertainty in demand and prices," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1051-1074.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengshi Lu & Zuo‐Jun Max Shen, 2021. "A Review of Robust Operations Management under Model Uncertainty," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1927-1943, June.
    2. Hamed Mamani & Shima Nassiri & Michael R. Wagner, 2017. "Closed-Form Solutions for Robust Inventory Management," Management Science, INFORMS, vol. 63(5), pages 1625-1643, May.
    3. Roberto Gomes de Mattos & Fabricio Oliveira & Adriana Leiras & Abdon Baptista de Paula Filho & Paulo Gonçalves, 2019. "Robust optimization of the insecticide-treated bed nets procurement and distribution planning under uncertainty for malaria prevention and control," Annals of Operations Research, Springer, vol. 283(1), pages 1045-1078, December.
    4. Viktoryia Buhayenko & Dick den Hertog, 2017. "Adjustable Robust Optimisation approach to optimise discounts for multi-period supply chain coordination under demand uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 55(22), pages 6801-6823, November.
    5. Zhi Chen & Melvyn Sim & Peng Xiong, 2020. "Robust Stochastic Optimization Made Easy with RSOME," Management Science, INFORMS, vol. 66(8), pages 3329-3339, August.
    6. Cleber D. Rocco & Reinaldo Morabito, 2016. "Robust optimisation approach applied to the analysis of production / logistics and crop planning in the tomato processing industry," International Journal of Production Research, Taylor & Francis Journals, vol. 54(19), pages 5842-5861, October.
    7. Henao, César Augusto & Ferrer, Juan Carlos & Muñoz, Juan Carlos & Vera, Jorge, 2016. "Multiskilling with closed chains in a service industry: A robust optimization approach," International Journal of Production Economics, Elsevier, vol. 179(C), pages 166-178.
    8. Ghazaleh Ahmadi & Reza Tavakkoli-Moghaddam & Armand Baboli & Mehdi Najafi, 2022. "A decision support model for robust allocation and routing of search and rescue resources after earthquake: a case study," Operational Research, Springer, vol. 22(2), pages 1039-1081, April.
    9. Lin, Jun & Ng, Tsan Sheng, 2011. "Robust multi-market newsvendor models with interval demand data," European Journal of Operational Research, Elsevier, vol. 212(2), pages 361-373, July.
    10. Marcio Costa Santos & Michael Poss & Dritan Nace, 2018. "A perfect information lower bound for robust lot-sizing problems," Annals of Operations Research, Springer, vol. 271(2), pages 887-913, December.
    11. Wei, Cansheng & Li, Yongjian & Cai, Xiaoqiang, 2011. "Robust optimal policies of production and inventory with uncertain returns and demand," International Journal of Production Economics, Elsevier, vol. 134(2), pages 357-367, December.
    12. Alan L. Erera & Juan C. Morales & Martin Savelsbergh, 2009. "Robust Optimization for Empty Repositioning Problems," Operations Research, INFORMS, vol. 57(2), pages 468-483, April.
    13. Oğuz Solyalı & Jean-François Cordeau & Gilbert Laporte, 2012. "Robust Inventory Routing Under Demand Uncertainty," Transportation Science, INFORMS, vol. 46(3), pages 327-340, August.
    14. Agra, Agostinho & Poss, Michael & Santos, Micael, 2018. "Optimizing make-to-stock policies through a robust lot-sizing model," International Journal of Production Economics, Elsevier, vol. 200(C), pages 302-310.
    15. Dimitris Bertsimas & Melvyn Sim & Meilin Zhang, 2019. "Adaptive Distributionally Robust Optimization," Management Science, INFORMS, vol. 65(2), pages 604-618, February.
    16. Peter L. Jackson & John A. Muckstadt & Yuexing Li, 2019. "Multiperiod Stock Allocation via Robust Optimization," Management Science, INFORMS, vol. 65(2), pages 794-818, February.
    17. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
    18. Nikulin, Yury, 2006. "Robustness in combinatorial optimization and scheduling theory: An extended annotated bibliography," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 606, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    19. Varas, Mauricio & Maturana, Sergio & Pascual, Rodrigo & Vargas, Ignacio & Vera, Jorge, 2014. "Scheduling production for a sawmill: A robust optimization approach," International Journal of Production Economics, Elsevier, vol. 150(C), pages 37-51.
    20. Jiang, Sheng-Long & Peng, Gongzhuang & Bogle, I. David L. & Zheng, Zhong, 2022. "Two-stage robust optimization approach for flexible oxygen distribution under uncertainty in integrated iron and steel plants," Applied Energy, Elsevier, vol. 306(PB).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:55:y:2017:i:7:p:1914-1929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.