IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v22y2019i1d10.1007_s10729-017-9422-6.html
   My bibliography  Save this article

Stochastic integer programming for multi-disciplinary outpatient clinic planning

Author

Listed:
  • A. G. Leeftink

    (University of Twente
    University Medical Center Utrecht)

  • I. M. H. Vliegen

    (Eindhoven University of Technology)

  • E. W. Hans

    (University of Twente)

Abstract

Scheduling appointments in a multi-disciplinary clinic is complex, since coordination between disciplines is required. The design of a blueprint schedule for a multi-disciplinary clinic with open access requirements requires an integrated optimization approach, in which all appointment schedules are jointly optimized. As this currently is an open question in the literature, our research is the first to address this problem. This research is motivated by a Dutch hospital, which uses a multi-disciplinary cancer clinic to communicate the diagnosis and to explain the treatment plan to their patients. Furthermore, also regular patients are seen by the clinicians. All involved clinicians therefore require a blueprint schedule, in which multiple patient types can be scheduled. We design these blueprint schedules by optimizing the patient waiting time, clinician idle time, and clinician overtime. As scheduling decisions at multiple time intervals are involved, and patient routing is stochastic, we model this system as a stochastic integer program. The stochastic integer program is adapted for and solved with a sample average approximation approach. Numerical experiments evaluate the performance of the sample average approximation approach. We test the suitability of the approach for the hospital’s problem at hand, compare our results with the current hospital schedules, and present the associated savings. Using this approach, robust blueprint schedules can be found for a multi-disciplinary clinic of the Dutch hospital.

Suggested Citation

  • A. G. Leeftink & I. M. H. Vliegen & E. W. Hans, 2019. "Stochastic integer programming for multi-disciplinary outpatient clinic planning," Health Care Management Science, Springer, vol. 22(1), pages 53-67, March.
  • Handle: RePEc:kap:hcarem:v:22:y:2019:i:1:d:10.1007_s10729-017-9422-6
    DOI: 10.1007/s10729-017-9422-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-017-9422-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-017-9422-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bohui Liang & Ayten Turkcan & Mehmet Erkan Ceyhan & Keith Stuart, 2015. "Improvement of chemotherapy patient flow and scheduling in an outpatient oncology clinic," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7177-7190, December.
    2. Xiuli Qu & Yidong Peng & Nan Kong & Jing Shi, 2013. "A two-phase approach to scheduling multi-category outpatient appointments – A case study of a women’s clinic," Health Care Management Science, Springer, vol. 16(3), pages 197-216, September.
    3. Qu, Xiuli & Peng, Yidong & Shi, Jing & LaGanga, Linda, 2015. "An MDP model for walk-in patient admission management in primary care clinics," International Journal of Production Economics, Elsevier, vol. 168(C), pages 303-320.
    4. Pablo Santibáñez & Vincent Chow & John French & Martin Puterman & Scott Tyldesley, 2009. "Reducing patient wait times and improving resource utilization at British Columbia Cancer Agency’s ambulatory care unit through simulation," Health Care Management Science, Springer, vol. 12(4), pages 392-407, December.
    5. H. Romero & N. Dellaert & S. Geer & M. Frunt & M. Jansen-Vullers & G. Krekels, 2013. "Admission and capacity planning for the implementation of one-stop-shop in skin cancer treatment using simulation-based optimization," Health Care Management Science, Springer, vol. 16(1), pages 75-86, March.
    6. Qu, Xiuli & Rardin, Ronald L. & Williams, Julie Ann S. & Willis, Deanna R., 2007. "Matching daily healthcare provider capacity to demand in advanced access scheduling systems," European Journal of Operational Research, Elsevier, vol. 183(2), pages 812-826, December.
    7. Lawrence W. Robinson & Rachel R. Chen, 2010. "A Comparison of Traditional and Open-Access Policies for Appointment Scheduling," Manufacturing & Service Operations Management, INFORMS, vol. 12(2), pages 330-346, June.
    8. Xiang Ma & Antoine Sauré & Martin L. Puterman & Marianne Taylor & Scott Tyldesley, 2016. "Capacity planning and appointment scheduling for new patient oncology consults," Health Care Management Science, Springer, vol. 19(4), pages 347-361, December.
    9. Van-Anh Truong, 2015. "Optimal Advance Scheduling," Management Science, INFORMS, vol. 61(7), pages 1584-1597, July.
    10. Min, Daiki & Yih, Yuehwern, 2010. "Scheduling elective surgery under uncertainty and downstream capacity constraints," European Journal of Operational Research, Elsevier, vol. 206(3), pages 642-652, November.
    11. Marie Matta & Sarah Patterson, 2007. "Evaluating multiple performance measures across several dimensions at a multi-facility outpatient center," Health Care Management Science, Springer, vol. 10(2), pages 173-194, June.
    12. Lara Wiesche & Matthias Schacht & Brigitte Werners, 2017. "Strategies for interday appointment scheduling in primary care," Health Care Management Science, Springer, vol. 20(3), pages 403-418, September.
    13. Serpil Mutlu & James Benneyan & John Terrell & Victoria Jordan & Ayten Turkcan, 2015. "A co-availability scheduling model for coordinating multi-disciplinary care teams," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7226-7237, December.
    14. Hari Balasubramanian & Sebastian Biehl & Longjie Dai & Ana Muriel, 2014. "Dynamic allocation of same-day requests in multi-physician primary care practices in the presence of prescheduled appointments," Health Care Management Science, Springer, vol. 17(1), pages 31-48, March.
    15. M. R. Garey & D. S. Johnson & Ravi Sethi, 1976. "The Complexity of Flowshop and Jobshop Scheduling," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 117-129, May.
    16. Tsai, Pei-Fang Jennifer & Teng, Guei-Yu, 2014. "A stochastic appointment scheduling system on multiple resources with dynamic call-in sequence and patient no-shows for an outpatient clinic," European Journal of Operational Research, Elsevier, vol. 239(2), pages 427-436.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Behnamian & Z. Gharabaghli, 2023. "Multi-objective outpatient scheduling in health centers considering resource constraints and service quality: a robust optimization approach," Journal of Combinatorial Optimization, Springer, vol. 45(2), pages 1-35, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    2. Bowen Jiang & Jiafu Tang & Chongjun Yan, 2019. "A comparison of fixed and variable capacity-addition policies for outpatient capacity allocation," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 150-182, January.
    3. Marynissen, Joren & Demeulemeester, Erik, 2019. "Literature review on multi-appointment scheduling problems in hospitals," European Journal of Operational Research, Elsevier, vol. 272(2), pages 407-419.
    4. Miao Bai & Bjorn Berg & Esra Sisikoglu Sir & Mustafa Y. Sir, 2023. "Partially partitioned templating strategies for outpatient specialty practices," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 301-318, January.
    5. Dogru, Ali K. & Melouk, Sharif H., 2019. "Adaptive appointment scheduling for patient-centered medical homes," Omega, Elsevier, vol. 85(C), pages 166-181.
    6. Lara Wiesche & Matthias Schacht & Brigitte Werners, 2017. "Strategies for interday appointment scheduling in primary care," Health Care Management Science, Springer, vol. 20(3), pages 403-418, September.
    7. Nguyen, Thu Ba T. & Sivakumar, Appa Iyer & Graves, Stephen C., 2018. "Capacity planning with demand uncertainty for outpatient clinics," European Journal of Operational Research, Elsevier, vol. 267(1), pages 338-348.
    8. T. Meersman & B. Maenhout, 2022. "Multi-objective optimisation for constructing cyclic appointment schedules for elective and urgent patients," Annals of Operations Research, Springer, vol. 312(2), pages 909-948, May.
    9. Guillaume Lamé & Oualid Jouini & Julie Stal-Le Cardinal, 2016. "Outpatient Chemotherapy Planning: a Literature Review with Insights from a Case Study," Post-Print hal-01324488, HAL.
    10. Yu Fu & Amarnath Banerjee, 2021. "A Stochastic Programming Model for Service Scheduling with Uncertain Demand: an Application in Open-Access Clinic Scheduling," SN Operations Research Forum, Springer, vol. 2(3), pages 1-32, September.
    11. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    12. Morikawa, Katsumi & Takahashi, Katsuhiko, 2017. "Scheduling appointments for walk-ins," International Journal of Production Economics, Elsevier, vol. 190(C), pages 60-66.
    13. Tugba Cayirli & Pinar Dursun & Evrim D. Gunes, 2019. "An integrated analysis of capacity allocation and patient scheduling in presence of seasonal walk-ins," Flexible Services and Manufacturing Journal, Springer, vol. 31(2), pages 524-561, June.
    14. Range, Troels Martin & Kozlowski, Dawid & Petersen, Niels Chr., 2019. "Dynamic job assignment: A column generation approach with an application to surgery allocation," European Journal of Operational Research, Elsevier, vol. 272(1), pages 78-93.
    15. Izady, Navid, 2019. "An integrated approach to demand and capacity planning in outpatient clinics," European Journal of Operational Research, Elsevier, vol. 279(2), pages 645-656.
    16. Nan Liu & Serhan Ziya & Vidyadhar G. Kulkarni, 2010. "Dynamic Scheduling of Outpatient Appointments Under Patient No-Shows and Cancellations," Manufacturing & Service Operations Management, INFORMS, vol. 12(2), pages 347-364, September.
    17. Eduardo Pérez, 2022. "An Appointment Planning Algorithm for Reducing Patient Check-In Waiting Times in Multispecialty Outpatient Clinics," SN Operations Research Forum, Springer, vol. 3(3), pages 1-22, September.
    18. Gang Du & Xinyue Li & Hui Hu & Xiaoling Ouyang, 2018. "Optimizing Daily Service Scheduling for Medical Diagnostic Equipment Considering Patient Satisfaction and Hospital Revenue," Sustainability, MDPI, vol. 10(9), pages 1-23, September.
    19. Pan, Xingwei & Geng, Na & Xie, Xiaolan & Wen, Jing, 2020. "Managing appointments with waiting time targets and random walk-ins," Omega, Elsevier, vol. 95(C).
    20. Tunçalp, Feray & Güneş, Evrim D. & Örmeci, E. Lerzan, 2024. "Modeling strategic walk-in patients in appointment systems: Equilibrium behavior and capacity allocation," European Journal of Operational Research, Elsevier, vol. 313(2), pages 587-601.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:22:y:2019:i:1:d:10.1007_s10729-017-9422-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.