IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v190y2017icp60-66.html
   My bibliography  Save this article

Scheduling appointments for walk-ins

Author

Listed:
  • Morikawa, Katsumi
  • Takahashi, Katsuhiko

Abstract

In addition to scheduled patients, most hospitals in Japan accept walk-ins, and the reduction of the waiting times of both scheduled patients and walk-ins is one of the managerial issues that need to be tackled. Under the stochastic behavior of the consultation time and the arrival of walk-ins, the present study proposes a scheduling method that assigns a scheduled time to each walk-in at the time of arrival and guides him or her to the waiting room at his or her scheduled time. It is assumed that the consultation time window of a physician is divided into several blocks, and each scheduled patient is allocated to one of the blocks in advance. A box is introduced into each block to accommodate walk-ins. A walk-in is assigned to a box if the total workload does not exceed the maximum workload level, which is one of decision variables of the proposed method. Numerical experiments reveal that the proposed method realizes shorter waiting times for walk-ins with increased waiting times for scheduled patients and increased total idle time for the physician. The proposed method also indicates better performance than a static method that allocates a fixed number of slots to walk-ins in each box in advance.

Suggested Citation

  • Morikawa, Katsumi & Takahashi, Katsuhiko, 2017. "Scheduling appointments for walk-ins," International Journal of Production Economics, Elsevier, vol. 190(C), pages 60-66.
  • Handle: RePEc:eee:proeco:v:190:y:2017:i:c:p:60-66
    DOI: 10.1016/j.ijpe.2016.10.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527316302894
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2016.10.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chrwan-Jyh Ho & Hon-Shiang Lau, 1992. "Minimizing Total Cost in Scheduling Outpatient Appointments," Management Science, INFORMS, vol. 38(12), pages 1750-1764, December.
    2. Fernandes, Nuno O. & Silva, Cristóvão & Carmo-Silva, S., 2015. "Order release in the hybrid MTO–FTO production," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 513-520.
    3. Guido Kaandorp & Ger Koole, 2007. "Optimal outpatient appointment scheduling," Health Care Management Science, Springer, vol. 10(3), pages 217-229, September.
    4. Qu, Xiuli & Rardin, Ronald L. & Williams, Julie Ann S. & Willis, Deanna R., 2007. "Matching daily healthcare provider capacity to demand in advanced access scheduling systems," European Journal of Operational Research, Elsevier, vol. 183(2), pages 812-826, December.
    5. Lawrence W. Robinson & Rachel R. Chen, 2010. "A Comparison of Traditional and Open-Access Policies for Appointment Scheduling," Manufacturing & Service Operations Management, INFORMS, vol. 12(2), pages 330-346, June.
    6. Fernandes, Nuno O. & Carmo-Silva, S., 2011. "Workload control under continuous order release," International Journal of Production Economics, Elsevier, vol. 131(1), pages 257-262, May.
    7. Van-Anh Truong, 2015. "Optimal Advance Scheduling," Management Science, INFORMS, vol. 61(7), pages 1584-1597, July.
    8. Refael Hassin & Sharon Mendel, 2008. "Scheduling Arrivals to Queues: A Single-Server Model with No-Shows," Management Science, INFORMS, vol. 54(3), pages 565-572, March.
    9. Rachel R. Chen & Lawrence W. Robinson, 2014. "Sequencing and Scheduling Appointments with Potential Call-In Patients," Production and Operations Management, Production and Operations Management Society, vol. 23(9), pages 1522-1538, September.
    10. Renata Kopach & Po-Ching DeLaurentis & Mark Lawley & Kumar Muthuraman & Leyla Ozsen & Ron Rardin & Hong Wan & Paul Intrevado & Xiuli Qu & Deanna Willis, 2007. "Effects of clinical characteristics on successful open access scheduling," Health Care Management Science, Springer, vol. 10(2), pages 111-124, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. T. Meersman & B. Maenhout, 2022. "Multi-objective optimisation for constructing cyclic appointment schedules for elective and urgent patients," Annals of Operations Research, Springer, vol. 312(2), pages 909-948, May.
    2. Pan, Xingwei & Geng, Na & Xie, Xiaolan & Wen, Jing, 2020. "Managing appointments with waiting time targets and random walk-ins," Omega, Elsevier, vol. 95(C).
    3. Namakshenas, Mohammad & Mazdeh, Mohammad Mahdavi & Braaksma, Aleida & Heydari, Mehdi, 2023. "Appointment scheduling for medical diagnostic centers considering time-sensitive pharmaceuticals: A dynamic robust optimization approach," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1018-1031.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    2. Guo, Hainan & Xie, Yue & Jiang, Bowen & Tang, Jiafu, 2024. "When outpatient appointment meets online consultation: A joint scheduling optimization framework," Omega, Elsevier, vol. 127(C).
    3. Shan Wang & Nan Liu & Guohua Wan, 2020. "Managing Appointment-Based Services in the Presence of Walk-in Customers," Management Science, INFORMS, vol. 66(2), pages 667-686, February.
    4. Katsumi Morikawa & Katsuhiko Takahashi & Daisuke Hirotani, 2018. "Performance evaluation of candidate appointment schedules using clearing functions," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 509-518, March.
    5. Bowen Jiang & Jiafu Tang & Chongjun Yan, 2019. "A comparison of fixed and variable capacity-addition policies for outpatient capacity allocation," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 150-182, January.
    6. Kazim Topuz & Timothy L. Urban & Robert A. Russell & Mehmet B. Yildirim, 2024. "Decision support system for appointment scheduling and overbooking under patient no-show behavior," Annals of Operations Research, Springer, vol. 342(1), pages 845-873, November.
    7. Dongyang Wang & Kumar Muthuraman & Douglas Morrice, 2019. "Coordinated Patient Appointment Scheduling for a Multistation Healthcare Network," Operations Research, INFORMS, vol. 67(3), pages 599-618, May.
    8. Christos Zacharias & Tallys Yunes, 2020. "Multimodularity in the Stochastic Appointment Scheduling Problem with Discrete Arrival Epochs," Management Science, INFORMS, vol. 66(2), pages 744-763, February.
    9. Yong-Hong Kuo & Hari Balasubramanian & Yan Chen, 2020. "Medical appointment overbooking and optimal scheduling: tradeoffs between schedule efficiency and accessibility to service," Flexible Services and Manufacturing Journal, Springer, vol. 32(1), pages 72-101, March.
    10. Shenghai Zhou & Yichuan Ding & Woonghee Tim Huh & Guohua Wan, 2021. "Constant Job‐Allowance Policies for Appointment Scheduling: Performance Bounds and Numerical Analysis," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2211-2231, July.
    11. Pan, Xingwei & Geng, Na & Xie, Xiaolan, 2021. "Appointment scheduling and real-time sequencing strategies for patient unpunctuality," European Journal of Operational Research, Elsevier, vol. 295(1), pages 246-260.
    12. Wen-Ya Wang & Diwakar Gupta, 2011. "Adaptive Appointment Systems with Patient Preferences," Manufacturing & Service Operations Management, INFORMS, vol. 13(3), pages 373-389, July.
    13. Zhou, Shenghai & Li, Debiao & Yin, Yong, 2021. "Coordinated appointment scheduling with multiple providers and patient-and-physician matching cost in specialty care," Omega, Elsevier, vol. 101(C).
    14. Christos Zacharias & Michael Pinedo, 2017. "Managing Customer Arrivals in Service Systems with Multiple Identical Servers," Manufacturing & Service Operations Management, INFORMS, vol. 19(4), pages 639-656, October.
    15. Van-Anh Truong, 2015. "Optimal Advance Scheduling," Management Science, INFORMS, vol. 61(7), pages 1584-1597, July.
    16. Lawrence W. Robinson & Rachel R. Chen, 2010. "A Comparison of Traditional and Open-Access Policies for Appointment Scheduling," Manufacturing & Service Operations Management, INFORMS, vol. 12(2), pages 330-346, June.
    17. Christos Zacharias & Mor Armony, 2017. "Joint Panel Sizing and Appointment Scheduling in Outpatient Care," Management Science, INFORMS, vol. 63(11), pages 3978-3997, November.
    18. Tugba Cayirli & Pinar Dursun & Evrim D. Gunes, 2019. "An integrated analysis of capacity allocation and patient scheduling in presence of seasonal walk-ins," Flexible Services and Manufacturing Journal, Springer, vol. 31(2), pages 524-561, June.
    19. Ruiwei Jiang & Siqian Shen & Yiling Zhang, 2017. "Integer Programming Approaches for Appointment Scheduling with Random No-Shows and Service Durations," Operations Research, INFORMS, vol. 65(6), pages 1638-1656, December.
    20. Vink, Wouter & Kuiper, Alex & Kemper, Benjamin & Bhulai, Sandjai, 2015. "Optimal appointment scheduling in continuous time: The lag order approximation method," European Journal of Operational Research, Elsevier, vol. 240(1), pages 213-219.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:190:y:2017:i:c:p:60-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.