IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v21y2018i2d10.1007_s10729-017-9427-1.html
   My bibliography  Save this article

A stochastic tabu search algorithm to align physician schedule with patient flow

Author

Listed:
  • Nazgol Niroumandrad

    (CIRRELT and Polytechnique Montreal)

  • Nadia Lahrichi

    (CIRRELT and Polytechnique Montreal)

Abstract

In this study, we consider the pretreatment phase for cancer patients. This is defined as the period between the referral to a cancer center and the confirmation of the treatment plan. Physicians have been identified as bottlenecks in this process, and the goal is to determine a weekly cyclic schedule that improves the patient flow and shortens the pretreatment duration. High uncertainty is associated with the arrival day, profile and type of cancer of each patient. We also include physician satisfaction in the objective function. We present a MIP model for the problem and develop a tabu search algorithm, considering both deterministic and stochastic cases. Experiments show that our method compares very well to CPLEX under deterministic conditions. We describe the stochastic approach in detail and present a real application.

Suggested Citation

  • Nazgol Niroumandrad & Nadia Lahrichi, 2018. "A stochastic tabu search algorithm to align physician schedule with patient flow," Health Care Management Science, Springer, vol. 21(2), pages 244-258, June.
  • Handle: RePEc:kap:hcarem:v:21:y:2018:i:2:d:10.1007_s10729-017-9427-1
    DOI: 10.1007/s10729-017-9427-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-017-9427-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-017-9427-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sauré, Antoine & Patrick, Jonathan & Tyldesley, Scott & Puterman, Martin L., 2012. "Dynamic multi-appointment patient scheduling for radiation therapy," European Journal of Operational Research, Elsevier, vol. 223(2), pages 573-584.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lotfi Hidri & Achraf Gazdar & Mohammed M. Mabkhot, 2020. "Optimized Procedure to Schedule Physicians in an Intensive Care Unit: A Case Study," Mathematics, MDPI, vol. 8(11), pages 1-24, November.
    2. Renata Mansini & Roberto Zanotti, 2020. "Optimizing the physician scheduling problem in a large hospital ward," Journal of Scheduling, Springer, vol. 23(3), pages 337-361, June.
    3. Shaowen Lan & Wenjuan Fan & Kaining Shao & Shanlin Yang & Panos M. Pardalos, 2022. "A column-generation-based approach for an integrated service planning and physician scheduling problem considering re-consultation," Journal of Combinatorial Optimization, Springer, vol. 44(5), pages 3446-3476, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tugba Cayirli & Pinar Dursun & Evrim D. Gunes, 2019. "An integrated analysis of capacity allocation and patient scheduling in presence of seasonal walk-ins," Flexible Services and Manufacturing Journal, Springer, vol. 31(2), pages 524-561, June.
    2. Bruno Vieira & Derya Demirtas & Jeroen B. Kamer & Erwin W. Hans & Louis-Martin Rousseau & Nadia Lahrichi & Wim H. Harten, 2020. "Radiotherapy treatment scheduling considering time window preferences," Health Care Management Science, Springer, vol. 23(4), pages 520-534, December.
    3. Kaining Shao & Wenjuan Fan & Zishu Yang & Shanlin Yang & Panos M. Pardalos, 2022. "A column generation approach for patient scheduling with setup time and deteriorating treatment duration," Operational Research, Springer, vol. 22(3), pages 2555-2586, July.
    4. Tu-San Pham & Louis-Martin Rousseau & Patrick Causmaecker, 2022. "A two-phase approach for the Radiotherapy Scheduling Problem," Health Care Management Science, Springer, vol. 25(2), pages 191-207, June.
    5. Silva, Thiago A.O. & de Souza, Mauricio C., 2020. "Surgical scheduling under uncertainty by approximate dynamic programming," Omega, Elsevier, vol. 95(C).
    6. Qu, Xiuli & Peng, Yidong & Shi, Jing & LaGanga, Linda, 2015. "An MDP model for walk-in patient admission management in primary care clinics," International Journal of Production Economics, Elsevier, vol. 168(C), pages 303-320.
    7. Gong, Jue & Liu, Shan, 2023. "Partially observable collaborative model for optimizing personalized treatment selection," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1409-1419.
    8. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    9. Marquinez, José Tomás & Sauré, Antoine & Cataldo, Alejandro & Ferrer, Juan-Carlos, 2021. "Identifying proactive ICU patient admission, transfer and diversion policies in a public-private hospital network," European Journal of Operational Research, Elsevier, vol. 295(1), pages 306-320.
    10. Agrawal, Deepak & Pang, Guodong & Kumara, Soundar, 2023. "Preference based scheduling in a healthcare provider network," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1318-1335.
    11. Rosita Guido & Giuseppe Ielpa & Domenico Conforti, 2020. "Scheduling outpatient day service operations for rheumatology diseases," Flexible Services and Manufacturing Journal, Springer, vol. 32(1), pages 102-128, March.
    12. Liping Zhou & Na Geng & Zhibin Jiang & Shan Jiang, 2022. "Integrated Multiresource Capacity Planning and Multitype Patient Scheduling," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 129-149, January.
    13. Samorani, Michele & LaGanga, Linda R., 2015. "Outpatient appointment scheduling given individual day-dependent no-show predictions," European Journal of Operational Research, Elsevier, vol. 240(1), pages 245-257.
    14. Jaime González & Juan-Carlos Ferrer & Alejandro Cataldo & Luis Rojas, 2019. "A proactive transfer policy for critical patient flow management," Health Care Management Science, Springer, vol. 22(2), pages 287-303, June.
    15. Camila Ramos & Alejandro Cataldo & Juan–Carlos Ferrer, 2020. "Appointment and patient scheduling in chemotherapy: a case study in Chilean hospitals," Annals of Operations Research, Springer, vol. 286(1), pages 411-439, March.
    16. Petra Vogl & Roland Braune & Karl F. Doerner, 2019. "Scheduling recurring radiotherapy appointments in an ion beam facility," Journal of Scheduling, Springer, vol. 22(2), pages 137-154, April.
    17. Siqiao Li & Ger Koole & Xiaolan Xie, 2020. "An adaptive priority policy for radiotherapy scheduling," Flexible Services and Manufacturing Journal, Springer, vol. 32(1), pages 154-180, March.
    18. Yasin Gocgun & Martin Puterman, 2014. "Dynamic scheduling with due dates and time windows: an application to chemotherapy patient appointment booking," Health Care Management Science, Springer, vol. 17(1), pages 60-76, March.
    19. Antoine Sauré & Martin L. Puterman, 2014. "The Appointment Scheduling Game," INFORMS Transactions on Education, INFORMS, vol. 14(2), pages 73-85, February.
    20. Alejandro Cataldo & Juan-Carlos Ferrer & Jaime Miranda & Pablo A. Rey & Antoine Sauré, 2017. "An integer programming approach to curriculum-based examination timetabling," Annals of Operations Research, Springer, vol. 258(2), pages 369-393, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:21:y:2018:i:2:d:10.1007_s10729-017-9427-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.